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THE

MECHANICS
OP

LAPLACE.

CHAP. I.

Ofthe equilibrium and of the composition of theforces

which act upon a material point.

1. A BODY appears to us to be in motion when it

changes its situation relative to a system of bodies

which we suppose to be at rest : but as all bodies, even

those which seem to be in a state of the most absolute

rest, may be in motion ; we conceive a space, bound-

less, immoveablc, and penetrable to raatter : it is to the

parts of this real or ideal space that we by imagination

refer the situation of bodies ; and we conceive them to

be in motion when they answer successively to different

parts of space.

The nature of that singular modification in conse-

quence of which bodies are transported from one place
to another, is, and always will be unknown : we have

designated it by the name of force ; and we are not able
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to determine any thing more than its effects, and tlie

laws of its action. The effect of a force acting upon a

material point is, if no obstacle opposes, to put it into

motion ; the direction of the force is the right line which

it tends to make the point describe. It is evident that

if two forces act in the same direction, their effect is the

sum of the two forces, and that if they act in a contrary

direction, the point is moved by a force represented by
their difference. If their directions form an angle with

each other, a force results the direction of which is a

mean between the directions of the composing forces.

Let us see what is this resultant and its direction.

For this purpose, let us consider two forces x and y
acting at the same time upon a material point M, and

forming a right angle with each other. Let % repre-

sent their resultant, and the angle which it makes with

the direction of the force x ; the two forces x and y
being given, the angle will be determined, as well as

the resultant % ; in short there exists amongst the three

quantities #, *,. and a relation which it is required

to know.

Let us then suppose the forces x, and y infinitely

small, and equal to the differentials dx and dy\ let us

suppose again that x becoming successively dx, QdX)

3dx> &c. y becomes dy> Qdy^ Sflfy, &c. ; it is evident

that the angle will be always the same, and that the

resultant % will become successively dz, 2dz, 3dz, &c. ;

therefore in the successive increments of the three forces

#,^, and s, the ratio of x to 2 will be constant, and

can be expressed by a function * of which we will re-

*
Every expression in which any number of indeterminate

quantities enter in any manner, is called a function of the

indeterminate quantities. Thus # J
, a*, a-\-bx, sin. x and
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present by $ (6) ; we shall therefore have x=z $ (S) ;

an equation in which x may be changed into^, pro-

vided that at the same time we change the angle 9 into

--Q
9
TT being the semi-circumference of a circle whose

radius is unity.

Moreover the force x may be considered as the re-

sultant of two forces x 1 and #", of which the first x 1
is

directed along the resultant z, and the second x 11

per-

pendicular to it. The force x which results from these

two new forces forming the angle 9 with the force x'

and the angle with the force x", we shall have:

these two forces may be substituted for the force x.

In like manner two new forces y' and y" may be sub-

stituted for y> the first being equal to and directed

3~?/

along s, and the second equal to -- and perpendicular

logarithm of (a-\-bx) are called functions of x; and
fltf-j-^j

(x-\~y)*-> s in - (<M"\-y) an(l log- (fuc+y*) are called func-

tions of x and y. One quantity is called an explicit function

of another quantity or quantities, when we directly perceive

how it is formed from the other quantity or quantities.

Thus in the expressions yax z
-\-bx-{-c and yaxz-}-bx

2
-\~

cz z
;
we have first y an explicit function of x, and next^/ an

explicit function of x and z. When we do not directly see

how one quantity is formed from others, tut must find it by
an algebraical process, we call that quantity an implicit

function of the others. Thns in the first of the foregoing

equations, x is an implicit functien of y. and in the second,

an implicit function ofy and x.
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to 2 ; we shall therefore have, instead of the two forces

x and^y, the four following ;

a?* y z xy xy
T ' V ' T '

the two last acting in contrary directions destroy each

other ; the two first acting in the same direction, when

added together form the resultant 2 ; we have therefore

*?-&=** ;

from which it follows that the resultant of the two forces

x and^ is represented in quantity by the diagonal of a

rectangle whose sides represent these forces.

Let us proceed to determine the angle 9. * If we in-

crease the force x by its differential dxy without altering

thf* force y, this angle will be diminished by the inde-

finitely small quantity d9, but it is possible to suppose
the force dx resolved into two, one dx1

in the direction

of 2, and the other dx" perpendicular to it ; the point

M will then be acted upon by the two forces z-\-dx'

and dx" which are perpendicular to each other, and the

resultant of these two forces which we represent by s/

will make with dx'1 the angle
- dQ ; we shall have

therefore by what precedes

the function 01
- dQ

J
is consequently indefinitely

* That the reasoning in the proof of the direction of the

resulting force may be more readily comprehended, I have

given a diagram, (Jig* i.J in which we may suppose Mr
or bz=X) Mb or xz or c==y, Ms=z 9

xa or zcdx
9
zz'=z

dx1

, z'cdx", Me resultant of z+dd and dd', angle zMx

pr0;
and angle zMc= dO.
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small, and ofthe form HO, k being a constant quantity

independent of the angle ; we have therefore

s' differing only by an indefinitely small quantity from.

%\ moreover as dx" forms with dx the angle- 9,

we Lave

therefore

.z-

Jf we increase the force y by o^, supposing x constant ;

we shall have the corresponding variation of the angle

6 by changing x intoy,^ into x, and into - 9, in

the preceding equation, which then gives dQ= '-
; by

k,z

making x and y vary at the same time, the whole vari-

ation of the angle will be *~
?
and we shall have

K %

By substituting for s
2 us value x^-^y* and* integrating

* The integral or fluent of the quantity

may easily be found by substituting ux for y, and udx-\~xdu

for dy, which gives

du uxdr _ du _
u zx*~~ ~~l+72

~~

therefore an arc whose tang. is w,is equal to kQ+( , consequent.

ly MZZ-= tang. (kQ+p). In the above it is hardly necessary

to observe, that dx, dy, du, and dQ represent #, y9 u, and d,

the fluxions of
.r, ?/, u, and 9.
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we shall have -= tang. (kQ-\-p) y p being a constant

quantity. This equation being combined with that of

x*-\-y*=z*', gives jr=n~. cos. (k6-}-p)*

It is now only required to find the two constant quan-

tities k and p ; but if we suppose y to vanish, then evi-

dently s=jr, and 9=0 ; therefore cos. f=l,and x=z.
cos. k9. If we suppose x to vanish, then s=y and

Q=:7r' cos. kQ being then equal to nothing. A: ought
to be equal to 2n-{-l 9

n being a whole number, and in

this case x will vanish whenever 6 shall be equal to

it
-

; but x being nothing, we have evidently 6- f?r -

therefore 2w-j-l=l or n-=0, consequently

x=.z. cos. 0.

From which it follows, that the diagonal of the rect-

angle constructed upon the right lines which represent

(he two forces .rand^, represents, not only the quantity,

but likewise the direction of their resultant. In like man-

ner we are able for any force whatever to substitute two

other forces, which form the sides of a rectangle having
ihat force for the diagonal ; and from thence it is easy

to conclude, that it is possible to resolve a force into

three others which form the sides of a rectangular pa*

rallelepiped of which it is the diagonal *.

* For if MA (fig. %.) represent any force, it may be

resolved into two others, MB and JMF, by means of the

rectangular parallelogram MBAF, also MF may in like

manner be resolved into the forces MG and ME
9 by form,

ing the rectangular parallelogram MGFE ;
then if a paral-

lelepiped be constructed having MEFG and MB for its

base and altitude, the force represented by its diagonal MA
will have been resolved into three other forces represented

in quantity and directiom by its three edges MG 9 ME, and

MB. These three lines arc called the co-ordinates of the

line
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Let therefore , #, c be the three rectangular co-

ordinates of the extremity of the right line, which re-

presents any force whatever, of which the origin is that

of the co-ordinates; this force will be represented by

the function 1/a2
4"^

2

4~c% and by resolving it parallel

to the axes of 0, &, and c, the partial forces will be re-

spectively represented by these co-ordinates.

Let a', &', c f be the co-ordinates of a second force ;

-}-' j b-\-b' 9 c-j-c' will be the co-ordinates of the re-

sultant of the two forces, and will represent the partial

ones into which it can be resolved parallel to three

axes ; from which it is easy to conclude, that this re-

sultant is the diagonal of the parallelogram constructed

upon the two forces.

In general , b, c ; a', b f

,
c

1

'; &c. being the co-or-

dinates of any number whatever of forces ; a-\-a!-\-a
ff

&c. ; b-{-b'-{-b
/l &c ; c+c'+c" &c. will be the co-or-

dinates of their resultant ; the square ofwhich will be the

sum of the squares of these last co-ordinates ; we shall

therefore, by this means, have both the magnitude and

'the position of the resultant.

2. From any point whatever of the direction of a

force S, which point we shall take for the origin of this

force, let us draw to the material point M a right line

which we will call s ; let JT, y, and % be the three rect-

angular co-ordinates, which determine the position of

the point M9 and
, by and c the co-ordinates of the

origin of the force ; we shall then have *

* In (fl > 3J let Ax, Ay, and Az represent the three

rectangular co-ordinates of #, #, and 2, and MS the line s-9

fron? the points S and M let fall the perpendiculars Sm and

MN upon tye plane ,yAx9 join m and JV, draw SB. pcrpendi.



If we resolve the force S parallel to the axes of r, of

4y, and of z ; the corresponding partial forces will be by

the preceding n. S.
,

S.
1^, and S.

,
*

cular to MN, from m and JV, in the plane yAx, draw the

perpendiculars mP and AT to ^, from m draw wzQ per.

pendicular to NT ; then because Sm and .MJV are perpen-

dicular to the same plane, they are parallel to each other
;

also as mN meets M.N in the plane yAx9
it is perpendicular

to it,
and parallel and equal to SR, as is Sm to RN

;
in

the rectangular figure PTQm we have PT=.mQ, and Pm=.
TQ. In *he figure SM=s 9 Sm=RN=c, MN=z, MR
r=MNNR=zc, AT==y, mPTQ=b, NQ=NT
TQyb, ATx, APa,PTmQ:=ATAP=xa,
and as MRS is a right angled triangle

but SR z=mNz=, as the triangle mQN is right angled,
*=PTZ+QN*, therefore

or by substitution, * < (x a)*+(y b}
2+(z c)

2
. If

S coincides with A, then a, 6, and c vanish, and

Let a, /3, and 7 respectively represent the angles which

5 in this case makes with the axes of #, y, and s, then it is

evident from fig. 2. in which we may suppose MA~s9

MG=x, MEy, and MB=z, that we have the following

proportion 5 : x : : rad. (1) : cos. <z, consequently

cos. -; in like manner cos. -, and cos. yzr-; if
5 S S

these cosines be substituted for their values in the equation

it will be changed into the following,

* By the preceding number s : x a : : S : ;

or the force in the direction of the axis x.
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or a. I r

and
(

- - I denoting, according to the received nofa-
\d Zj

tion, the co-efficients of the variations $x
9 y, and Jg,

in the variation of the preceding expression of s.

If, in like manner, we name s
1 the distance ofM from

any point in the direction of another force S', that point

^^ si^
being taken for the origin of the force ; S' I r I \vili

be this force resolved parallel to the axis of #, and so

on of the rest ; the sum of the forces S, S', S/7

,
&c. re-

solved parallel to this axis will therefore be 2. S.( :
J

the characteristic 2 of finite integrals denoting here,

the sum of the terras S.
(^), S'. Q, &c.

Let Fbe the resultant of all the forces 5, S;

, &c.,
and w the distance of the point J/from a point in the

S$ s\ f% s\ f^s\
* The expressions t

J, ^ J, ^J enclosed be.

tween parentheses, represent the co-efficients of the partial

ilifferentiations of the equation

s= (x a

taken by making Xy y^ and z rary separately ; thus differ.

entiating the equation, by supposing y and s constant, we

obtain fc= ^
therefore^ ^= ,

in like man.
t \oxJ s

1 ^~ 1^3-^- and f |
^

C
: these expressions

\oyJ s \$zj s

are evidently equiralent to the co-sines of the angles which

the line s makes with the co-ordinates x, y^ and z respec-

tively.
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direction of this resultant, which is taken for its origin ;

F". ( , ] will be the expression of this resultant re-

go'ved parallel to the axis of x ; we shall therefore havt

by <he preceding number F. ( ^J=2 S. ( r~ )

We shall have in like manner,

from which we may obtain, by multiplying these three

equations respectively by S.r, Sy, and &s, and then add-

ing them together,

F. $u 2. S. Ss ; . . . r>)

As this last equation has place, whatever may be the

variations &r, 5y, and 5s, it is equivalent to the three

preceding ones.

If its second member is an exact variation of a func-

tion p, we shall have F. &?/=&<, and consequently,

that is to say, the sum of all the forces S, S7
, &c. re-

solved parallel to the axis oi x is equal to the partial

differential ( r - V This case generally takes placa

when these forces are respectively functions of the dist-

ance of their origin from the force M. In order to have

the resultant of all these forces resolved parallel to any

right line whatever, we shall take the integral 2.f.S$$,

and naming it p, we will consider it as a function of x,

and of two other right lines perpendicular to x and to

ech other; the partial differential (
r-J will then be



LAPLACES MECHANICS. It

the resultant of the forces S, S', &c. resolved parallel to

the right line x.*

* The following expressions of the equilibrium of a point

follow from the above equations. Suppose that the powers

are represented both in magnitude and direction by &, S'9

S", &c. whose directions form the following angles,

with the axis of x ... a, a', a", . .

with the axis of,y . . . /3, /3'. /3", . . .

with the axis of z ... y+ y', y",

By resolving each of these forces into three others whose di.

rections are parallel to the axes, we shall have for the com.

posing forces parallel

to 0? . . S. COS. #, 5'. COS. a', S". COS. a", &C. .

toy . . S. cos. /3, S'. cos. /3', S". cos. /3", &c. .

to Z . . S. COS. y, 5'. COS. y', S". COS. y", &C. .

Each of these three collections of forces is equivalent to a

single force, equal to their sum^ because these components
are directed in 'the same right line. Naming P. (2, and R
the three forces respectively parallel to x^ y^ and z

9
we

have

P S.cos

lil=6\COS.y-fS
>/

.COS.y
/

-f.^".COS.y"-|-&C.

Let
, 6, and c represent the unknown angles which the

direction of the resultant V forms with the three axes
;

F. cos. a, V. cos. 6, V. cos c will be its components in the

directions of the axes
;
we shall have therefore V. cos, u P

3

F. cos. 6mQ, and F. cos. cR. If we add the squares of

these equations together, remembering that cos.*a-\-cos.
2
b-{-

cos. 2c 1, we shall obtain F2=P*+Q*+R^ which gives

V\/(P2
-fQ 2+# Z

J ; the direction of the resultant may
be obtained from the equations

cos. a
, cos. b

t=jr,
cos. c

nr-p.

These equations determine both the magnitude and the di-
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3. When the pointM is in eqnilibrio by the action

of all the forces which solicit it, their resultant is no-

thing, and the equation (a) becomes

S. S. 3s ; (b)
which shews, that in the case of the equilibrium of a

point acted upon by any number whatever of forces,

the sum of the products of each force by the element of

its direction is nothing.

If the pointM is forced to be upon a curved surface,

it will experience a re-action which we shall denote by
JR. This re-action is equal and directly contrary to the

pressure with which the point presses upon the surface ;

for by supposing it acted upon by two forces, R and

/L, it is possible to conceive, that the force R is

destroyed by the re-action of the surface, and that the

point M presses upon the surface with the force R /

but the force of pressure of a point upon a surface is

perpendicular to it, otherwise it would be possible to

resolve <the force into two, one perpendicular to the sur-

face, which would be destroyed by it, the other pa-

rallel to the surface, in consequence of which the point

would have no action upon it, which is contrary to the

rection of the resultant F, which is evidently the diagonal

of the parallelepiped constructed upon P, Q, and R. If

the system be in equilibrio, it is manifest that each collection

of forces parallel^ the axes should likewise be in equilibrio,

which gives

Pr=0, Q=0, R0.
With respect to the signs of the components S. cos.

,

S', cos. a/, c., it may be observed that those which tend

to increase the co-ordinates should be reckoned positive,

and those which act in a contrary direction negative.
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supposition ; naming
* r therefore the perpendicular

drawn from the point 3/at the surface, and terminated

in any point whatever of its direction, the force R will

be directed along this perpendicular; it will be neces-

sary therefore to add R.$r to the second member of (lie

equation (b) which will become

0=2. S. $s+R. Jry (c)

7? being then the resultant of all the forces S, S7
,
&c

it is perpendicular to the surface.

If we suppose that the arbitrary variations &r, y?

and 2 appertain to the curve surface upon which the

point is forced to remain, we shall have, by the nature

of the perpendicular to this surface, SrzzzO, which makes

A1
, or vanish from the preceding equation : the equa-

tion (b) has place therefore in this case, provided that

we extract one of the three variations r, 5y, and o^,by
means of the equation to the surface ; but then the

equation (b) which in the general case is equivalent to

three, is not equivalent to more than two distinct equa-

tions, which we may obtain by equalling separately t

nothing the co-efficients of the two remaining differ-

entials, t Let u-=D be the equation of the surface-

* In (Jig. 4.) let a point be in equilibrio at 37, on the

curve AMB 9 by means of the forces MP
9 J\lQ y

and the re.

action of the curve
;
then if AJR

9 supposed perpendicular to

the curve at Af, be the resultant of the forces MP, and 3/Q,
it will represent the pressure of the point upon the curve,

and if RM be produced tor, and 3/r Af/v, then Mr will

represent the re-action of the curve upon the point, which

may be supposed in equilibrio in consequence of the force?

MP, MQ, and Mr.
t The nature of a surface may be determined by three rect-

angular co-ordinates, as that of a line may by two ; thus fet
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the two equations SrzziO and $u=.Q will have place at

the same time, this requires that r should be equal to

f
N being a function of.r, y, and z. Naming a,

u~0 be an equation to a surface, and let its co-ordinates or,

^, and z be respectively measured upon the lines AX^ AY^
and AZ (jig. 5.) ; if the values of x and y are given and

represented by a and #, by taking on the axes of a: and,y

APa, 4Q=b, and drawing the parallels QAP, PM' to

these axes, the point M'
9
which is the projection of the point

M of 1 he surface upon the plane of#, ?/, will be determined ;

the equation by substitution will then give the corresponding

value of z, which determines the length of the co-ordinate

MM, and, consequently the point M of the surface.

Curves of double curvature are formed by the intersection

of two surfaces. Thus, let the equations to two surfaces be

represented by F(oc, ?/, zJO, and/fa?, #, zJrzO, then the

curve of double curvature formed by their intersection will

have the same co-ordinates \
if therefore the variable x be

extracted by means of these equations, the resulting one will

represent the projection of the curve of double curvature

upon the plane of 3/2; in like manner, if y had been ex.

tracted, the resulting one would have been that of the pro-

jection upon the plane of are; and if z had, that of the pro.

jection upon the plane of xy. The resulting equations

likewise represent cylindrical surfaces elevated upon these

projections respectively perpendicular to the planes of the

co-ordinates, and the curve of double curvature will be the

intersection of any two of these surfaces.

Those who are desirous of being acquainted with the pro.

perties of surfaces, or of curves of double curvature, or of

lines supposed in space, and considered with reference to

their projections upon three planes at right angles to each

other, may consult the Traite' du Calcul Differentiel et

Integral par S. F. Lacroix, the Application de 1'Algebre a la

Geometric par MM. Monge et Hachette, &c.
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ft, and c the co-ordinates of the origin of r, we shall

have to determine it

from which we may obtain

1 5 and consequently

by making therefore

the term R. Sr of the equation (c) will be changed info

X&w, and this equation will become

0=2. S. Ss+x. *w /

in which we ought to equal separately to nothing the

co-efficients of the variations ojc, y, and 2, which gives

three equations ; but they are only equivalent to two

between x^y, and s, on account of the indeterminate

quantity X which they contain. We may therefore

instead of extracting from the equation (b) one of the

variations &x, ^y s
or Ss, by means of the differential

equation to the surface, add to it this equation multi-

plied by an indeterminate quantity X, and then con-

sider the variations for, 2>y, and $z as independant quanti-

ties. This method, which likewise results from the theory

of elimination, unites to the advantage of simplifying

the calculation, that of making known the pressure

R with which the point JJ/acts against the surface*.

* Let the point be supposed in equilibrio upon a surface

whose equation is M 0, and let the forces ,9, ', &", &c. be

reduced to three P, Q 9
and R acting in the directions of the
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Supposing this point to be contained in a canal.of

simple or double curvature, it will prove on the part

three rectangular co-ordinates
;
then the sum of the moment*

P.&c-l-Q.fy+jR.S* will be equivalent to S$s+S'W+S"Ss"
-f-&c. and by adding %u, multiplied by the indeterminate

quantity A, the equation of equilibrium becomes

P.S*-fQ.fy+U.fcf-f-xSMiz: ;

but u being a known function of x
9 y t

and z
9
we shall have

l>y differentiation

%u\ f$u\ . f$u\
^ I, I 1, ana I * I representing the co-efficients of

&e, 5y, and ?. By substituting this value of $u in the pre.

ceding eqnation, it becomes

which gives, by equalling separately to nothing each sum of

the terms multiplied respectively by ^JF, fy ?
and oz

9
the three

following equations

e+,(L;)=0

from which, by extracting A, we shall obtain the two follow

ing equations

that contain the conditions of the equilibrium of a ppint

upon a surface.
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of the canal, a re-action which we shall denote by /;,

that will be equal and directly contrary to the pressure

with which the point acts against the canal, the direc-

tion of which will be perpendicular to its side; but the

curve formed by this canal is the intersection of two

In the case of a point acted upon by certain forces, the

conditions of its equilibrium upon a surface may be found

with more ease, by directly substituting in the equation

the value of oz obtained from the differential equation

of the surface, and then equalling separately to nothing the

co-efficients of the differentials <$x and S^. By this method

we shall immediately get th*
1

equations

P R.

which are equivalent to the equations found by the other

method.

In like manner, if a body is forced to be upon a line of a

given description, determined by the two differential equa-
tions Jyzrp&e, SzqSx of the projections of the line upon the

planes of xy and
a:*-,

we have only to substitute these values

of ly and $2, in the equation P.&e-f-Q.fy-f/OzzzO, which,
on being divided by &r, gives the equation,

for the condition of equilibrium
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surfaces, of which the equations express its nature ; we

may therefore consider the force k as the resultant

of the two forces 7? and R', which re-act upon the

point jl/from the two surfaces; moreover as the di-

rections of the three forces /?, R l

,
and k are perpendi-

cular to the side of the curve, they are in the same

plane. By naming therefore or and r' the elements of

the directions of the forces R and R', which directions

are respectively perpendicular to each surface, it will

be necessary to add to the equation (b) the two terms

R.$r and R'3r' which will change it into the following

Q==S,.S3s+R3r+R'.V. (d)

If we determine the variations .r, Sy, and $z so that

they may appertain at the same time to two surfaces,

and, consequently, to the curve formed by the canal ;

r and r' will vanish, and the preceding equation will

be reduced to the equation (b) y
which therefore has

place again in the case where the point M is forced to

move in a canal ; provided, that by means of the two

equations which express the nature of the canal, we

make two of the variations Svr, Sy, and $z to disappear.

Let us suppose that w=0 and u'=D are the equations

of the two surfaces, whose intersection forms the canal,

If we make

R

and

R 1

X' --
/()'<)'+('

the equation (d) will become

0=2. S.
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an equation in which the co-efficients of each of the

variations &r, ?/,
and Ss will be separately equal to no-

thing; in this manner three equations will "be obtained,

by means of which the values of X and X 1

may be deter-

mined, which will give the re-actions R and R' of the

two surfaces ;
and by composing them we shall have

the re-action 7; of the canal upon the poi: t JIT, and,

consequently, the pressure with which this point acts

against the canal. This re-action, resolved parallel to

the axis of jc is equal to

the equations of condition z/zzrJ), and w'zzzO, to which

the motion of the point M is subjected, express, there-

fore, by means of the partial differentials of functions,

which are equal to nothing because ofthese equations,

the resistances which act upon this point in consequence

of the conditions of its motion.

It appears from what precedes, that the equation (b)

of equilibrium has generally place, provided, that the

variations o.r, Sy, and Iz are subjected to the conditions

of equilibrium,, This equation may therefore be made
the foundation of the following principle.

If an indefinitely small variation is made in the posi-

tion of the point My so that it still remains upon the

surface, or the curye along which it would move if it

were not entirely free ; the sum of the forces which
t
so-

licit it, each multiplied by the space which the point
moved in its direction, is equal to nothing in the case

of equilibrium *.

* Let the forces S, S", S"
9
&c. be supposed to act npon

the point M in the directions of the Hues s, s', s", &c. r.
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The variations &r, y, and $z being supposed arbi-

trary and independent, it is possible in the equation

spectively drawn from that point to the origins of these

forces; let V iHp.-esen; rheir resuKant, aod u a line drawn

from the point M in us direction
; also, let an) line AiN9

be supposed to be drawn trom the point A/, and each of *he

forces V* Si &', &c. to ue resolved into two others, one in

the direction of this line, and the other perpendicular to it.

Because Fis the resultant of a.11 the other forces, its compo-
nent along the line MN will hf equal to the sum of the com-

ponents of the other forces along the same Jine ; let m, ,

', ", &c. denote the angles which the directions of the

forces V) , S', &", &c. respectively make with the line

)
we shall then have the following equation,

Let any point N be taken upon the line MJV, then if this

line be represented by 6, and its respective projections upon

the lines wz, $, *', s", &c. or their continuations by AM,

A*, A*', A*", &c. we shall have

A// 6. cos. z, A^zz&.cos.fl, A-y'm&.cos.a', &c.

If both sides of the preceding equation are multiplied by &,

it will, by substitution, become

V AwzuS.As-fS.'A*'-f ".A5-"-f&c.

If the point M be supposed to move to*the point JV, and the

line MN be regarded as representing the virtual velocity of

this point, the quantities AM, As, As', &c. will denote the

virtual velocitie^ of 'his point in the directions of the forces

V. S, S
1

, S", &c. ;
the last equation therefore shews, that the

product of the resultant of any number of forces applied to

the same pbint. by the virtual velocity of this point estimated

in its direction, is equal to the sum of the products of these

forces by their re-pective virtual velocities, estimated in the

directions of the forces. It is not absolutely necessary that
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(a) to substitute for the co-ordinates r, y and * three

other quantities which arc functions of them, and to

equal the variations of these quantities to nothing.

Thus naming p the radius drawn from the origin of

the co-ordinates to the projection of the pointM upon

the plane of x and y^ and CT the angle formed by p and

the axis of x, we shall have

By considering therefore in the equation (a), U 9 s, s',

&c. as functions of/?, ro, and ~, and comparing the co-

efficients of Jw, we shall have

pfL?V-2 sf V
(

j
is the expression of the force F resolved ia

the direction of the element p.tizs. Let V be this force

resolved parallel to the plane of.r. and y, and p the per-

pendicular let fall from the axis of s, upon the direction

the virtual velocities should be supposed indefinitely small,

if they are, the last equation becomes

In the case of equilibrium, we have J^mO, and consequent]?
o=s.fc+s

/

.a*'+,&
i

'V, &c.

If the point is forced to remain upon a given curve orsur^

face, this Aquation will be proper, the virtual yelocities $s
9

$.?', s", &c. being supposed indefinitely small, and S^nrO in-

stead of F.

The products S.$S) S'.$s
f

, S".W, &c. are called by some

authors the moments of the powers S, S 1

, S", &c. ;
and their

sum being equal to nothing, which has place not only for one

point, but, as will be proved hereafter, for any system what.

ever in equilibrio, is called the principle of virtual ve

loci ties.
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of V1

parallel to the same plane ;
- will be a second
p

expression of the force V resolved in the direction of

the element pfa *; we shall therefore have

If we suppose the force V1 to be applied to the extremity

of the perpendicular p, it will tend to make it turn about

the axis of 3 ; the product of this force by the perpen-

dicular is what is called the moment of the force V with

respect to the axis of s \ this moment is therefore equal

to V.(~- 1 ; and it appears from the equation (e) 9

\diyj
that the moment of the resultant of any number what-

ever of forces is equal to the sum of the moments of

these forces

* Let MB (fig* 6.J represent F', or the force V resolved

along a plane parallel to that of xy 9
let be the point where

this plane cuts the axis of s, join OM9
then OM will be pa-

rallel and equal to p ,
draw OA or p perpendicular to V or

MB produced, also BD perpendicular to OM; then, as the

right angled triangles MBD, MOA have a common angle at

M, they are similar, consequently

M0(f) : OA(p) : : MB(V')
P

but the line DB represents the force V resolved in the di-

rection fift perpendicular to p ?
therefore that force is repre-

pV
seated by ~ ,

f
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CHAP. II.

Ofthe motion of a material point.

4. A POINT at rest is not able to give itself any mo-

tion, because it does not contain within itself any cause

why it should move in one direction rather than another.

When it is solicited by any force whatever, and after-

wards left to itself, it will move constantly in an uniform

manner in the direction of that force, if not opposed by

any resistance. This tendency of matter to persevere

in its state of motion or rest, is called its inertia. This

is the first law of the motion of bodies.

That the direction of the motion is a right line fol-

lows evidently from this, that there is not any reason

why the point should change its course more to one

side than the other of its first direction : but the cause

of the uniformity of its motion is not so evident. The

nature of the moving force being unknown, it is impos-

sible to discover a priori it it ought to continue with-

out ceasing. In fact, as a body is incapable of giving
itself any motion, it appears equally incapable of alter*

in<j that which it has received : so that the law of
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inertia is the most simple and natural which it is pos-

sible to imagine ; it is also confirmed by experience,

for we observe upon the earth that the more the ob-

stacles are diminished, which oppose the motions of

bodies, the longer these motions are continued ; which

leads us to believe, that if the obstacles were removed

they would never cease. But the inertia of matter is

most remarkable in the motions of the celestial bodies,

which have not during a great number of ages experi-

enced any perceptible alteration. Thus we may regard

the inertia of bodies as a law of nature, and when we

shall observe any alteration in the motion of a body, we

will suppose that it is owing to the action of a different

cause.

In uniform motion the spaces gone over are in pro-

portion to the times, but the time employed in describ-

ing a given space, is longer or shorter according to the

magnitude of the moving force. These differences have

given rise to the notion of velocity, which, in uniform

motion, is the ratio of the space to the time passed in

going over it: thus, s representing the space, t the

time, and v the velocity, we have v=.-. Time and

space being heterogeneal, and consequently, not com-

parable quantities, a determinate interval of time is

chosen, such as a second for an unit of time; in like

manner, some unit of space is chosen, as a metre; and

then space and time become abstract numbers, which

express how often they contain the units of their species,

that are tli us rendered comparable to each other. By
this means the velocity becomes the ratio of two ab-

stract numbers, and its unity is the velocity of a body
which passes over the space of a metre in one second.

5. The force being only known by the space which
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it causes a body to describe in a given time, it is natural

to fake this space for its measure ; but this supposes that

many forces acting in the same direction, should cause

the body to pass over a space equal to the sum of the

spaces which each of them would have made it go
over separately; or what comes to the same, that the

force is proportional to the velocity. This is what we

are not able to know a priori, owing to our ignorance

of the nature of the moving force ; it is therefore ne-

cessary to have again recourse to experience on this

occasion, for all that which is not a necessary conse-

quence of the little which we know respecting the na-

ture of things, must be to us but a result of observation*.

* Mr. Knight, in the ninth No. of the Mathematical Re-

pository, has attempted to prove the law of the proportion,

ality of the force to the velocity, by supposing two straight

lines at right angles to each other, to represent the magni-
tudes and the directions of two forces, and taking parts from

these lines, measured from their junction, to represent the

velocities which these forces would respectively cause ; and

bv completing two parallelograms, one about the lines de-

noting the forces, and the other about those denoting the

velocities, and drawing diagonals in each of them represent-

ing the respective resultants of the forces and the velocities
;

he has shewn that if the diagonals are in the same right line

the parallelograms will be similar, and consequently the

forces and the respective velocities proportional ; if they
are not, it must be supposed that the resultant of the forces

has caused a motion in a different direction to its own, which

is absurd.

Mr, Knight has, T think, proved that the force varies as

the velocity, if it be taken for granted, that the proofs re.
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Naming t> the velocity of the earth, which is common
to all the bodies upon its surface, let /"be the force by
which one of these bodiesM is actuated in consequence
of this velocity, and let us suppose that 7izif<p (f) is the

relation which exists bet ween the velocity and the force;

(p (f) being a function of/ which it is necessary to de-

termine by experiment. Let a, h, and c be the three

partial forces into which the force / may be resolved

parallel to three axes which are perpendicular to each

other. Let us then suppose the moving b >dy M to be

solicited by a new force/
7

, which may be resolved into

three others ', b', and c' parallel to the same axes.

The forces by which this body will be actuated in the

directions of these axes, are a-{-a' 9 &-|-//, and c-f-c'/

naming JFthe sole resulting force, it will become, from

what precedes,

If the velocity corresponding to F be named U;

~rr- will represent this velocity resolved pa-

specting the composition arid the resolution of forces, and

those respecting the composition and the resolution of velo.

cities, are satisfactorily demonstrated independent of each

other.

* If U represents the velocity of the body corresponding

to F, we shall find that part of it relative to the axis of a-\-a
r

by the proportion

tc+c
1

)
2

: +' : : U :

(a+a')U

V a-l-tt y--t-( wfw y--f-( G-J-CV

but JF
f

=1/faH-a
/

J
a+r*+*

/

J
a
4-('cH-c

/

JS therefore, hj

Substitution the expression becomes- .-'^
>->

r<
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rallel to the axis of a; also the relative velocity of the

body upon the earth parallel to this axis will be

~
9

or (a+a').<?(F) a. $ (f). The
*

greatest forces which we are able to impress upon bodies

at the surface of the earth, being much smaller than

those by which they are actuated in consequence of the

motion of the earth, we may consider a', V, and c' as

indefinitely small quantities relative to /: we shall

therefore have F=f+- ^ '

I and

* If
', &', and c' are supposed indefinitely small relative

fo/3
th^ir squares and products may be neglected: the PX-

pression (a+a'y+lb+b'y+^c+cf)*
will then become'^cl

;
let a 2

-f6
2
-f-c

2
:rr 2 and

^cc
/=

<y, then if the expression \/f
z
-\-y is ex-

panded by the binomial theorem, it will become /-}-

/

& c . or^1 & c . but as all the terms after the
/

two first of the series contain the squares, products, or

higher powers of a', 6', and c, they may be neglect d.

If in the expression 9 (a) we substitute x-^-k for x
9

it be.

.

7c 4 -f &c. \\Iuch gives, if (pf.rj be represented

by M, 9fjc+ ArJ=n +~.Ar+_^ .A.-
2 ^-f---^+ &C

a'.c l/J.a'.t
2 1.2.3f/^

this is called the theorem of Taylor, and is prored a variety
of ways in different mathematical works. If/be substituted
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; tf(f) ; ?Y/) being the

differential of <p(f) divided by df. The relative velo-

city ofM in the direction of the axis of a, will, in like

manner, become

a'.<t(f)-{j.{
aa>+bb>+cc'}. Wf).

Its relative velocities in the directions of the axes b and
c will be

The position of the axes a,b, and c being arbitrary, we

may take the direction of the impressed force for the

axis of 0, and then b' and c' will vanish ; and the pre-

ceding relative velocities will be changed into the fol-

lowing,

does not vanish, the moving body in conse-

quence of the impressed force ', wilt have a relative

velocity perpendicular to the direction of this force,

provided that b and c do not vanish ; that is to say,

provided that the direction of this force does not coin-

for
a?, and--i_ fork in the above expression, it becomes

but as the quantities a', &', and c' are indefinitely small, the

products and higher powers than the irst of ^
a
- .

C
-.

way be neglected.
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cide with that of the motion of the earth. Thus, sup-

pose that a globe at rest upon a very smooth horizontal

plane is struck by the base of a right angled cylinder,

moving in the direction of its axis, -which is supposed

horizontal, the apparent relative motion of the globe

will not be parallel to this axis in all its positions with

respect to the horizon : thus we have an easy means of

discovering by experiment if $'(f) has a perceptible

value upon the earth ; but the most exact experiments

have not shewn in the apparent motion of the globe any
deviation from the direction of the impressed force ;

from which it follows that upon the earth, <p'(f) is very

nearly nothing. If its small value were perceptible, it

would particularly be shewn in the duration of the oscil-

lations of the pendulum, which would alter as the posi-

tion of the plane of its motion differed from the direction

of the motion ofthe earth. As the most exact observations

have not discovered any such difference, we ought to

conclude that Q'(f) is insensible, and may be supposed

equal to nothing upon the surface of the earth.

If the equation q>'(f)=0 has place, whatever the

force f may be, q(f) will be constant, and the velocity

will be proportional to the force ; it will also be pro-

portional to it if the function Q(f) is composed of only

one term, as otherwise $(f} would not vanish except/"

did : it is necessary, therefore, if the velocity is not

proportional to the force, to suppose that in nature the

function of the velocity which expresses the force is

formed of many terms, which is hardly probable ; it is

also necessary to suppose that the velocity of the earth

is exactly that which belongs to the equation <p

f

(f}=Q,
which is contrary to ail probability. Moreover the ve-

locity of the earth varies during the different seasons of

the year ; it is about one thirtieth part greater in winter
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than in summer. This variation is still more consider-

able, if, as every thing appears to indicate, the solar

system be in motion in space ; for according as this pro-

gressive motion agrees with that of the earth, or is ron-

trary to it, (here should result during the course of the

year very great variations in the absolute motion of

the earth, which would alter the equation that we nrc

considering, nnd the relation of the impressed force to

the absolute velocity \vhich results, if thisequation and

this ratio were not independent of the motion of the

earth ; nevertheless, the smallest difference has not been

discovered by observation.

Thus we have two laws of motion, the law of inertia,

and that of the force being proportional to the velocity,

which arc .given from experience. They are the most

natural and the most simple which it is possible to

imagine, and are without doubt derived from the na-

ture itself,of,maitGr ; bat this nature being unknown,

they are with .respect to us solely the consequences of

observation, ancLthconly ones which the science of me-

chanics requires ;from experience.

6. As the velocity is proportional to the force, these

two quantities,may be represented by each other, and

all that! has been previously established respecting the

composition of forces, ,may be applied to the composi-

tion of velocities^*. It therefore results that the rela-

* Let I/, u", and v'" represent the uniform velocities im-

pressed upon^a body in the directions of three rectangular

coordinates, #, ^, and s, the, spaces respectively passed over

in the time t in consequence of them ; we shall then have the

three following equations

y~v"t, z^tf'f,



LAPLACE'S MECHANICS. 31

live motions of a system of bodies actuated by any
forces whatever, are the same whatever may be their

common motion ; for this last motion resolved into three

others parallel to three fixed axes, causes the partial

and the resulting motion will be uniform and rectilinear, and

determined hy the equation

sV^f +**)=t\/(v'
2 +f H *'" z

)y

in which * represents the space gone over. If v represents

f.he velocity of the body, it will be equal to

The co. sines of the angles which the direction s of the mo-

tion forms with the co-ordinates #, #, and s respectively,

are

Let 5, ar, #, and z have the same significations as above,

and g', ", and #'" denote the constant accelerating forces

impressed parallel to the axes of .r, #, and z ;
then the equa-

tions of the motion of the point being_ \affZ. ..- 1 0JI/1 . 9- ifl."//2.x- 2'S
l

> y-TS l ) *-TS t 9

the equations of the projections of the line passed over upon

the planes of xy and yz t
will be, as appears by extracting t*

from the two first and two last equations

the line passed over will therefore be a right line, and we

shall have



LAPLACES MECHANICS.

velocities of each body parallel to these axes to increase

by the same quantity, and as their relative velocity

only depends upon the difference of these partial velo-

cities, it is the same whatever may be the motion com-

If a, /3,
and y represent the co-sines of the angles which

makes with j?, y^ and z respectively, then

cos . g= . _/,.., cos./3=

cos.v

The accelerating force in the direction of s is constant and

equal to y'tf
2
-f-g"

z
-fg

1 " 2
), and composed of the three given

accelerating forces, as is the case with uniform motions.

Retaining the foregoing notation, and supposing that v
1

,

", and v
1"

represent the initial velocities of a point acted

upon by constant accelerating forces parallel to the three

axes ;
the equations of the impressed motion will be

[x=*ft+tet*; y=v"t+g"*; *=*"'<+&"/.
The projection of the curve passed over by the point upon
the plane of xy^ found by extracting t from the two first

equations, is

A, JB, and C being constant quantities, a comparison of the

co-efficients of xz and xy will shew that this projection is a

parabola. The projection upon one of the other planes will

also give a parabola, consequently the line passed over is a

parabola,

It may be proved that the curve passed over is of single

curvature or upon a plane, without obtaining the equations
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mon to all the bodies ; it is therefore impossible tojudge

concerning the absolute motion o! the system of which

we make a part, by the appearances we observe, and it

is this which characterises the law of the proportion-

ality of the force to the velocity.

Again, it results from No. 3, that if we project each

force and their resultant upon a fixed plane, ihe sum of

the moments of the composing forces thus projected,

with resp ct to a fixed point taken upon the plane, is

equal to the moment of the projection of the resultant;

but if we draw a radius, which we shall call a radius

vector, from this point to the moving body, this radius

projected upon the fixed plane will trace, in conse-

quence of each force acting separately, an area equal to

the product of the projection of the line which the

moving body is made to describe, into one half of the

perpendicular drawn from the fixed point to this pro-

jection : this area is therefore proportional to the time.

of projection, by extracting t from the three equations of

motion, which gives one of the form

ox -f by -\- cz- Q

that belongs to a plane surface.

If the velocities A, and parallel to the three axes
at dt at

at any instant whatever, are composed into one, it will be

The accelerating force in the direction of the motion, or

dv
-, is, as may easily be proved,
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If is also in a given time proportional to the moment of

IK projection of the force ; thus, the sum of the areas

which the projection of the radius vector would describe

in consequence of each composing force, if it ai I

a one, is equal to the area which the resultant \v i

make the same projection describe. It therefore fol-

lows, that if a body is projected in a right line, and

afterwards solicited by any forces whatever directed fo

wards a fixed point, its radius vector will always de-

srribf abou this point areas proportional to the times ;

because the areas which the new composing quantifies

cause this radius to describe will be nothing. Inversely,

^vve may see that if the moving body describes areas

proportional to the times about the fixed point, the re-

sultant of the new forces which solicit it is always di-

rected towards this point.

7. Let us next consider the motion ofa point solicited

by forces, such as gravity, which seem to act continu-

ally

The causes of this, and similar forces which have

place in nature, being unknown, it is impossible to dis-

cover whether they act without interruption, or, after

successive imperceptible intervals of time
; but it is easy

to be assured that the phenomena ought to be very

nearly the same in the two hypotheses ; for if we repre-

sent the velocity of a body upon which a force acts in-

cessantly by the ordinate of a curve whose abscissa re-

presents the time, this curve in the second hypothesis

will be changed into a polygon of a very great number

of sides, which for this reason may be confounded with

the curve. We shall, with geometers, adopt the first

hypothesis, and suppose that the interval of time which

separates two consecutive act ions of any force -whatever

is equal to the element dtot the time, which we will de-
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note by t. It is evidently necessary to suppose that the

action of the force is more considr rable as the interval

is greater which separates its successive actions
;

in

order that after the same time ;, the velocity may be the

same ; the instantaneous action of a force ought there-

fore to be supposed in the ratio of its intensity, and of

the element of the time during which it is supposed to

act. Thus, representing this intensity by P, we ought
to suppose at the commencement of each instant dt, the

moving body to be solicited by a force P.dt, and moved

uniformly during this instant. This agreed upon :

It is possible to reduce all the forces which solicit a

point M to three, P, (?, and /?, acting parallel to three

rectangular co-ordinates x
9 y, and z, which determine

the position of this point ; we shall suppose these forces

to act in a contrary direction to the origin of the co-

ordinates, or to tend to increase them. At the com-

mencement of a new instant
cfr, the moving body re-

ceives in the direction of each of its co-ordinates, the

increments of force or of velocity, P.dt, Q.dt, R.dt.

The velocities of the point M parallel to these co-orJi-

nates are
^ ^anci^ ; for during an indefinitely

small time, they may be supposed to be uniform, and,

therefore, equal to the elementary spaces divided by the

element of the time. The velocities by which the

moving body is actuated at tiie commencement of a

new instant, are consequently,

dt dt dt
or
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but at this new instant, the velocities by which the

moving body is actuated parallel to the co-ordinates

,, fix .
,

dx dii
, du

x,y, and s, are evident!/ f-f+d. ;
-ff+d. -,- nnd

7t+*
'

Tt : the forces-*+p
'*>-*;n+ Q ' dt

>

and
d.-^-\-R.dt, ought therefore to be destroyed, so

that the moving body may in consequence of these

sole forces be in equilibrio. Thus denoting by &r, Sy,

and s any variations whatever of the three co-ordinates

x, y, and 2, variations which it is not necessary to con-

found with the differentials cte, dy, and cfz, that ex-

press the spaces which the moving body describes pa-

rallel to the co-ordinates during the instant dt ; the

equation (b) of No. 3 will become

-P.dl
\

-2Q.dt

(f)

If the point 71/be free, we shall equal the co-efficients

o* .r, y, and <$z separately to nothing, and, supposing

the element dt of the time constant^ the differential

equations \vill become *

d* x n d2- y ~ , dz z n* The equations P 5 ^3=Q, and zz: .ft, are
dt 2 '

dt* dt1

sufficient to enable us t* discover the velocity, the trajectory
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If the point M be not free but subjected to move

upon a curve line or a surface, (here must be extracted

and the place at any given time, of a point not constrained

to move along a line or a surface, but continually acted upon

by forces which are given every instant both in magnitude

and direction.

Thus supposing for greater simplicity, that thp point

moves in the plane xy, P and Q being constant or variable

but given ; by extracting the time from the two equations

zrP, - Q> and integrating them twice, we shall

find a relation between x and y which will give the trajectory

of the point. In a like manner, the rela'ion between x aud

,
or y and t may be found, which will give the position of

the point for any given value of the time t. The values of

and -- will likewise give the velocities of the point in
at at

the directions of x and y^ from which we may obtain the

real velocity v of the point ;
for

=:-?= i/ IGDXST
The first of the two constant quantities which the above

double integration requires, will be detfrmined by the value

of the velocity at a given instant, such as the commence,

ment of the time t. The second will depend upon the situa-

tion of the point with respect to the two axes at this instant.

If the moving body be atf raoted towards a fixed point by a

single force, the integrals of the equations

may be readily obtained in the following manner,
Let the origin A of the co-ordinates be placed at this

fixed point, and suppose the ir oving body m in any position,

having #, j/, and z for its rectangular co-ordinates ;
then its
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from the equation (f), by means of the equations to

the surface or the curve*, as many of the variations

distance from the point A will be represented by y^z 1^2
\ z *

and the force acting upon it by ,
which when resolved in

the directions of-x
} y^ and s gives

The three first mentioned equations, by propermuitiplication

and subtraction, evidently give the three following,

If the above values of P, (2, and H are substituted in these

equations, their second members Avill vanish, and their first

will give by integration, the following xdy ydxcdt^
xdy ydx(Jdt y a.n&ydz zctyzzc"^, c, c', and c" being

constant quantities ; these equations shew, as will be here.

after demonstrated, that equal -areas are described in equal

times, by the projections of the line Am upon the planes of

the co-ordinates. If these integrals be added together, after

having multiplied the first by a, the second by y, and the third

by #, the equation cc+ c^-f-6'"'* 0? which belongs to a plane,

will be obtained.

* If a point moves upon a curve line or surface, it may
be supposed free, and acted upon by a force equal and op.

posite to the perpendicular pressure upon the curre or sur-

face. Let us, for example, .suppose that ~~f(x,y) is rji

equation to a curve surface, by differentiating it, we shall have

dzpdx+qdy. Let
Jfe:y'(

r

l+p
2+?a

-), then Jt ma7 be

easily proved that the normal of the curve surface forms with

the axes x
9 y, and z

9 angles, the co.sines of which are
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&r, cty,
and $z as it will have equations, and the co-effi-

cients of the remaining variations must be equalled to

nothing *.

P Q ^

, -TJ,
an(^17 respectively. If N represent a force in the

direction of the normal, equal and opposite to the pressure

upon the curve, its components in the directions of the axes

p N qN N
x, y^ and z will be

;~TT~?
~~~ aad

~\J respectively ; the

two first forces are negative, because they tend to diminish

the co-ordinates x and^y, if the curve surface have its con-

vexity towards the planes of xz and jys, as can easily be

proved. The point may therefore be regarded as free, and

acted upon by the forces P
-, Q - ~

y
and

which will give the following equations,

P_ A P
M >

N

* When the motion takes place in a resisting medium, the

resistance of the medium may be regarded as a force which

acts in a direction contrary to the motion of the body. Let

/represent this resistance, then its moment will be /.Si, if

i is supposed to be equal to V(& O 2 + (y m) 2 + (z n) z
i

/, m, and n being the co-ordinates of the origin of the force

/. By differentiation

x / y m z n Kfe:-^. Ss-f^-r-. % y+ r-.^.

If the origin of the force /is supposed to be in the tangent
of the curve described by the body, and

indefinitely; near to
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8. It is possible in the equation (f) to suppose the

variations <r, Sy, and $z equal to the differentials dx9

dyi and efe, because these differentials are necessarily

subjected to the conditions of the motion of the moving

it
;

it may be conceived that x #zrrf#, y wzzJy, z n

zzfife, which gives, by representing the element ot the curve

by ds, the following equations,
x / dx y-m dy z n dz

' ~j s : zz "r~ i and : zz ~r~ z

i d *' z ds' i as '

consequently,

dx dy dz

ds*. d s' y*ds'

If the resisting medium be in motion, it will be necessary
to compose this motion with that of the body, in order to

obtain the direction of the resisting force. Let dot, dj3, and

dy denote the small spaces through which the medium passes

parallel to the axes of the co-ordinates x
9 y ,

and 2, during-

the time that the body describes the space ds, it will be

proper to substract these quantities from dx, dy, and dz, in

order to have the relative motions. As ds\djc*+ dy* -f dz

if it be supposed that

d*~
the following equation may be obtained

. iy+
(la- do- do-

It should be observed with respect to the resistance /, that

ds
it is generally a function of the velocity ;

but in this case

in which the medium is in motion, it is a function of the re.

dff

lative velocit' -r:,
* at
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body M. By making this supposition, and afterwards

integrating the equation (f), we shall have :

dxz -* dy
z
-\-dz

z
.

c being a constant quantify. -7- istrie square

of the velocity ofM
9
which velocity we will denote by

v; supposing therefore that P.dx-\-Q.dy-\-R.dz is

the exact differential of a function (p, we shall have *

(g)

* In every case in which the formula P,dx-\-Q,,dy~\-R.dz

is an exact differential of the variables x
t y^ and 2, the equa-

tion (g) will give the velocity of the point M at any part

of its trajectory, if we know it at any one determinate place.

For as
<p

is a function of x
9 y^ and a, let it be represented

by'/f*jjfy0j also suppose ^4 to denote the known velocity at

the point where the co-ordinates are
, a', and a", then we

shall have the equations

and consequently

This equation shews the value of
,
when Jf and the co-or-

dinates x, y, z, 5
a'

y
and #" corresponding to the velocities

v and ^4 are given.

It appears from the above that it is possible to determine

the difference of the squares of the velocities at two points of

the trajectory, by means of the co-ordinates of thse points,
without knowing the curve along which the moving body
passes in going from one point to the other,

The above does not hold good if P.dx+Q.dy+R.dz be

not an exact differential, as for instance, when the forces

G
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This case has place when the forces which solicit, the

pointM9
are functions of the respective distances of

their origins from this point, which comprehends nearly

all the forces of nature.

In fact S, S', &c. representing these forces, s
9 s',

&c. being the distances of the point M from their;

origins, the resultant of all these forces multiplied by
the variation of its direction, will be equal, by No. 2.

toS.S.fo/ it is also equal to P.&+Q.*y+/2.&3/ we

Lave therefore

and as the second member of this equation is an exact

differential, the first is likewise. It results from the

equation (g), 1st. That if the point Mis not solicited

by any forces, its velocity is constant, because in this

case (p~0 *. It is easy to be assured of this otherwise

P9 Q 9
and R arise from friction or the resistance of a fluid,

and contain in their rallies the velocities . , and ; in
dt d dt'

which case the expression is not an exact differential of a

function of
a?, #, and 2, 'regarded as independent variables.

FOP to integrate p under such circumstances, it would be ne-

cessary to substitute the values of these variables and their

differentials in functions of the time, which could not be done

except the problem had been previously solved.

* If the point is not acted upon by any accelerating force,

tyut moves from an initial impulse, the forces P, Q, and R
are nothing and <p vanishes, therefore a a

zz:r, or the velocity

is constant, consequently the velocities in the directions of

the axes #
} y9 and z- are constant, and may be supposed re.



by observing that a body moving on a surface or curve

linefloses at each rencounter with the indefinitely small

plane of the surface, or of the indefinitely small side of

the curve, but an indefinitely small portion of its velo-

city ofthe second order *. Sndly, That the pointM in

passing from one given point with a given velocity, to

arrive at another, will have at this last point the same

velocity, whatever may be the curve which it shall

have described.

But if the body is not forced to move upon a deter-

minate curve, the curve described by it possesses a si-

spectively equal to the inrariable quantities e', c", and c'".

We therefore have the equations

<*** fyji dz
c'" .

Tr~ ' 7T* 1 Tt~
from which by extracting dt, we shall obtain d'dxz^ddy, and

e'
a

dy^nd'dz ; which give by integration c^rza-ft/y, and

c"'y~b-\-d'z for the equations of the projections of the tra-

jectory upon the planes of ocy and yz ; but these equations

belong to straight lines, consequently the trajectory is a

straight line.

* It is proved in most treatises upon mechanics, that if

a body moves along a system of inclined planes, the velocity
lost in passing from one plane to another, is, as the versed

sine of the angle which the planes make with each other. If

the number of planes in a given curve are indefinitely increas-

ed, the supplements of their angles of inclination, and con.

^frequently the chords become indefinitely small
; by the rules

f trigonometry we have versed sine zr
1

?-
f

: there.
Radius

fore if the chord is an indefinitely small quantity of the first

order, the versed sine is an indefinitely small one of the se.

cond, consequently th velocity lost may be regarded as an

indefinitely small quantity of the second refer.
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milar property to which we have been conducted by

metaphysical considerations, and which is, in fact, Tmt

a remarkable result of the preceding differential equa-
tions. It consists in this, that the integral fvds com-

prised between the two extreme points of the curve

described, is less than any other curve, if the body is

free, or less than any other curve subjected to the same

surface upon which it moves, if it is not entirely free.

To make this appear, we shall observe that P.efcr-J-

Q'dy-\-R.dz being supposed an exact differential, the

equation (g) gives

the equation (f) of the preceding number becomes alsr

dx dii d z
. d. tt. > v .

Naming the element of the curve described by the

moving body ds, we shall have

vdt=ds ; tf=|/^+//+rfs y
*

and by equating,

dx du d z

0=*xJ.jf\*y.d.jf t.d.
Tt
- <b.h> ; (h)

by di%rentiating, with respect to ^, the expression of

ds, we shall have

* That ds\/(d&-\-dy*+ d'z
t
')

is evident from consider

ing that the co-ordinates of s and s^-ds are #, #, z and x -\- dx

f z-\-dz -, consequently,

which gives ds~
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The characteristics d and being independant*, we

may place them one before the other at will ; the pre-

ceding equation can therefore be made to take the fol-

lowing form,

dz

-fc.rf.y-,

* It 'may here be necessary to observe, that when equa-

tions contain the differentials dx, dy, and dz, and the varia-

tions o#, y, and oz at the same time, the differentials and

variations are to be supposed constant wi(h respect to each

other, in all the various processes of differentiation or inte-

gration. The order in which these processes are performed

is also indifferent as to the result. Thus o.r/.r f/.^r, o.f/
2jrm

d.S.d-cd^x, S.Jnjr f/m . $.dn-xdr
'ox, also \fu-ftu, u

being here supposed a function of x
9 y, z

9 dx, dy, dz
y c^jr,

&c., the sign /denoting the integration of the function witfe

respect to the characteristics dx, &c. If u be a function-

of jT
y I/,

and ~, the equation u-mf(x^y^z) gives

atso

in which we evidently have
fromjjie process of differentiation

(du\__r^n\
(du\__/-!>u\ Sdu\_S$u\

dxj-^xr \dyj~\lyj' \&J\*z)'
As the nature of these notes will not permit me to enter fully

upon the subject of variations, I shall refer the reader, who
is desirous of information respecting them, to the Traiter da

Calcul Differential et Integral pour S. F. Lacroix. The
Traite Elementaire de Calcul Diffprentiel et de Calcul In-

tegral, by the same author, contains an abridged account of
f.hem frm the largo work.
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by subtracting from the first member of this equation,

the second member of the equation (h), we shall have

This last equation being integrated by relation to tbo

characteristic d, will give

.

If we extend the integral to the entire curve describee!

by the moving body, and if we suppose the extreme"

points of this curve to be invariable*, we shall have

5,/
i

orfsi=3); that is to say, of all the curves along

which a moving body, subjected to the forces P, Q9

and 7?, can pass from one given point to another given

point, it will describe that in which the variation of

the integral feds is nothing, and in which, consequently

this integral is a minimum. If the point moves along
a curve surface without being acted upon by any force,

its velocity is constant, and the integral feds becomes

* If the point from which the body begins to move be

fixed, the quantities tix, oy, and Ss are there respectively

equal to nothing, therefore the constant quantity of the

equation

, dx.$x+dg.ty-{- dz.Sz
ofvds const. f

~ J J
-

dt

is equal to nothing, as its other terms vanish at that point.

If the quantities $,r, y, and $z are also respectively equal to

nothing at the end of the motion, from the point where it

dx.$x -f dy. ty -f- dz . $z
<?nds being fixed, we snail have - equal to

nothing, therefore Ifvds is equal to nothing, that is, tho va-

riation of the quantity fvds is a minimum.



AAPLACE'S MECHANICS.

vfds; thus the curve described by the moving bodj is,

in this case, the shortest -which it is possible to trace

upon the surface, from the point ofdeparture to that of

arrival *.

"*
Maupertuis, in two memoirs, one sent to the Academy

f Sciences at Paris, in the year 1744, and the other to that

of Berlin, in the year 1746, asserted, that in all the changes

which take place in the situation of a body, the product of

the mass of the body by its Telocity and the space which ife

Jias passed over is a minimum. This he called tl*e principle

of the least action, and it was applied by him to the discovery

of the laws of the refraction and the reflection of light, the

laws of the collision of bodies, the laws of equilibrium, &c.

Euler afterwards shewed that in the trajectories of bodies

acted upon by central forces, the integral of the velocity

multiplied by the element of the curve is always a minimum,
which is an excellent application of the principle of the least

action to the motions of the planets. This general principle,

which was assumed as a metaphysical truth, appears evidently

to be derived from the laws of mechanics.

The following will be sufficient to shew the reader the way
in which the principle may be used to discover the laws of the

refraction and of the reflection of light.

Suppose a ray of light to pass from one point to another,

if the points are in the same medium, the velocity of the ray
is constant, the. path is a straight line and the principle ob-

vious
;

if they are in two different mediums, let v repress;-;

the velocity of the ray, and s the space it passts through, in

the first medium, and v' its velocity and s' the space passed

through by it in the second medium ; we shall then have the

quantity v$-\-v's' ,
which is a minimum for the value offvds.

Th solution of this question is very easy and leads us to the

following equation, v. sin. # r. sin. &, in which a repre-

sents the angle f incidence and b the angle of refraction at
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9. Let us determine the pressure which a point

moving upon a surface exerts against it. Instead of

extracting from the equation (f) of No. 7, one of the

variations &r, Sy, and $z 9 by means of the equation of

the surface, we may by No. 3, add to this equation the

differential equation of the surface multiplied by an in-

determinate quantity Xefc, and afterwards consider

the three variations &, 2>y,
and $s as independant quan-

tities. Let therefore u= be the equation of the sur-

face ; we shall add to the equation (f) the term

h.^u.dt, and the pressure with which
t[ie point acts

against it will be, by No. 3, equal to

Let us now suppose that the point is not solicited by

any force, its velocity v will be constant ; if we observe

lastly, that iodt=.ds 9
the element dt of the time being

supposed constant, the element ds of the curve de-

scribed will be so likewise, and the equation (f) aug-

the surface of the second medium. The above equation

shews that the ratio of the two sines depends upon that of

the velocities of the ray in passing through the different

mediums.

If the ray in passing from one point to another is reflected

at the surface of the second medium, the velocity will be

constant, and the path a minimum ;
in which case, it may

be readily proved, that the angle of incidence of the ray in

passing from one point to the surface of the second medium,

1$ equal to the angle of reflection from it to the other point.
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mented by the terra X.Su.dt, will give the three fol-

lowing,

df- \dxj itt*

iVom which we may obtain

*

ds*

but asefo is constant, the radius of curvature of the curve

described by the moving body is equal to

ds*

by naming this radius r, we shall have

that is to say, the pressure exercised by the point

against the surface, is equal to the square of its velocity

divided by the radius of curvature of the curve which

it describes.

lithe point move upon a spherical surface, it will

describe (he circumference of a great circle ofthtfsphere

which passes by the primitive direction of its motion :

for there is not any reason why it should move more to

the right than to the left of the plane of this circle ; its

pressure against the surface, or, what comes to the

same, against the circumference which it describes, is

therefore equal to the square of its velocity divided by
the radius of this circumference.

If we imagine the point to be attached to the end of

a thread supposed without thickness, having the other

ii
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extremity fastened to the mitre of (he surface ; it is

evident that the prfs.su re exercised by this point against
the circumference will be eaual to the tension which

the thread would *xp<'rienoe if the point were retained

by it alone. The effort which this point makes to

stretch the thread, and to go farther from the centre of

the circumference, is, what is called the centrifugal

force; therefore the centrifugal force is equal 10 the

square of the velocity divided by th<- radius.

In the motion ot a point upon any curve whatever,
the centrifugal force is equal to the square of the velo-

city, divided by the radius of curvature of the curve,

because the indefinitely small arc of this curve is con-

founded with the circumference of the circle of curva-

ture ; we shall therefore have the pressure which the

point exerts against the curve that it describes, by

adding to the square of the velocity divided by the ra-

dius of curvature, the pressure due to the forces which

solicit this point. In the motion of a point upon a

surface, the pressure due to the centrifugal force, is

equal to the square of the velocity divided by the ra-

dius of curvature of the curve described by this point,

and multiplied by the sine of the inclination ot the

plane of the circle of curvature to the tangential plane

of the surface *
: by adding to this pressure that which

*
Suppose the radius of curvature RP or r, (Jig. 7.), of

the poiut P of the curve described by the body upon the sur-

face, to be produced to A ; let PA represent the centrifugal

V*
force of tke body moving in the curve ; from P draw the

line PB perpendicular to the plane tangent of the surface at
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arises from the action of 'he forces that solicit the

point, we shall have the whole pressure which ii exerts

against the surface.

We have seen that if the point is not acted upon by

any forces, its pressure a^ain*t the surface is equal 10

the square of its velocity divided by the radius o. cur-

P; draw AB perpendicular to PB let the line DPC bo tht

section of the plane tangent caused by a plane passing thro -^h

the points ABP perpendicular t the plane tangent ; then

as AB. CPD, are respectively perpendicular to the line P#,
they are parallel to each other, therefore the angle BAP is

equal to the angle DP ft, but this last angle is that which

the plane of the circle of curvature makes with the plane

tangent, for as the intersection of the plane of the curv<j and

of the plane tangent of the surface is the tangent to the curve

at P,the linePf? is perpendicular to it
;
likewise the radius of

curvature of the curve is perpendicular to its tangent at the

same point, consequently the plane passing through the lines

J5P, PR, and the line PD in it drawn from the point P,
are perpendicular to the tangent of the curve

;
therefore the

angle DPR is the angle which the plane tangent makes with

the plane of the curve. By trigonometry in the right angled

triangle PAB, we have

rad. (1) : sine BAP or DPR : : PA (-*} : PB,

F2

therefore P # sine DPR, but PB represents the cen.
r

trifu gal force of the body moving on the surface, consequently
the centrifugal force of a body moving ^pon a

sujjjjace,
is

equal to the square of the velocity divided by the radius of

curvature of the curve described by this point an.? multiplied

by the sine of the inclin-ri >n >f th< utan >t the circieof cr~
Tatnre to the tangential plane of the surtace.
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vature of the curve described, the plane of the circle

of curvature, that is to say, the plane which passes

by two consecutive sides of the curve described by the

point, is, in this case, perpendicular to the surface.

This curve relative to the surface of the earth, is called

a perpendicular to the meridian, and we have proved

(No. S) that it is the shortest which it is possible to

draw from one point to another upon the surface.

10. Of all the forces which we observe upon the

earth, the most remarkable is gravity; it penetrates

into the most inward parts of bodies, and without the

resistance of the air, would make them fall with an

equal velocity. Gravity is very nearly the same at the

greatest heights to which we are able to ascend, and at

the lowest depths to which we are able to descend ;

its direction is perpendicular to the horizon ; but in

the motions of projectiles, we may suppose, without

sensible error, that it it constant, and that it acts along

parallel lines ;
on account of the small extent of the

curves which they describe relative to the surface of

the earth. These bodies moving in a resisting fluid,

\ye shall call /3 the resistance that they experience, it

is directed along the side of the curve described by

them, which side we will denote by cfc, we shall more-

over call g the force of gravity. This agreed upon :

Let us resume the equation (f) of No. 7, and sup-

pose the plane of a: and y horizontal, and the origin of

% at the most elevated point; the force /3 will produce

in. the directions of x, y y
ad 2, the three forces

_.<|fe #. ,
and /3.~ ; we shall therefore have,

s d s us

by No. 7,

/--*; <^-*.*;



and the equation (f) will become

If the body be entirely free, we shall have the three

equations

* *, =*-'*

The two first will give

dy dx ilx dy

Tt~dt~TtTt-
from which, by inti'graf ion, we shall obtain rfcr=r

/being a constant quantity. This is the equation to an

horizontal right line; therefore ihe body moves in a

vertical plane. By taking for this plane that of x and

s, we shall have^rzziO; the two equations

will give, by making dx constant,

fls.d*t d*z dz d't . dz

from which we may obtain gdi*=.(l*z, and by differen-

tiating 2gdt.d*t=:d
3
z ; by substituting for d*4 its value

'

7 5
and for dt* its value we shall have

<**
'

-

$_ ds d*z

g a.C^aJ*"

This equation gives the law of the resistance /3 necr*-

sary to make a projectile describe a determinate curve.

If the resistance be proportional to the square of the

ds1

Velocity, & is equal to /*.
,
h being constant in the

Ctt"
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case where the density of the medium is uniform. We
shall then have

/3 hds* h.ds*

g gdi- d*z
'

and from substituting the value of-, hds-=z ; which

gi?'s by integration

&**.*d x2

a being a constant quantity*, and c the number whose

* The value of a may he found as follows : Let g-<fr
z be

substituted for d*z in the equation -~^ 2ac
S

?
then it is

dx* g 2hs dx
evident that ^--n^.c ,

but is the velocity of

the projectile parallel to the axis of #, let v represent

the velocity of projection, and 6 the angle which its di-

rection makes with that axis, then (--V t)
2 cos. 2

6

consequently as srrO at the commencement of the motion, we

have u acos. 2 -^- and a ,

d1 z * 2hs
therefore - -^

^-. c

By supposing dz equal to pdx, this last equation may be

dn ff 2hs

changed into the following -L~
*

, c ;
but as ds

dx v*. cos. 2
Q

-\-dz*~dx\/ 1-f-p
2

. hy multiplyirig the first member

of this equation by dx^~\+i and the second by ds it will

O' 2HS

become rfpy
/T+p=P a CQS a0-

c - * Tbe inteSral of

djpl/T+p* is 4:{pV
/
T+]p*+lo.(

r

jp+V
/

l-f-p^jjandthat of
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hyperbolical logarithm is unity. If we suppose (he re-

sistance of the medium to be nothing, or 7?
?
we shall

have, by integration, thr equation to a parabola

b and e being constant quantities*

=C+--' C being a constant

quantity, which may be determined by observing, that at the

commencement of the projection s0 and />:z:fan.0, conse-

quently,fct
or-- -r, By substituting in the above integral the

D.a C08. 2d.A

dp g-
2hs

ralue of c
2h * obtained from the equation -7- :

"
:.c

a^ i>.
a cos. 2 9

we shall have the following

~
/ilpV/l-j-^

which gives, as dz~

By the integration of these equations the values of x and s

would be given in functions of p. A third equation may
be obtained which would give the time in a function of the

same quantity, by substituting the value of dx derived from

dp.dx
the equation <# 2 -- in one of the preceding equations,

&

and extracting the square root, which will give the following

dp

?
2>- 6 A

If these three equations could be integrated so as to have a
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The differential equation d'z=gdt* will pivf? <//*

.</#% from which we may obtain / r*/ ^
-\-f .

o

If x, *, and t are supposed fo begin together, we shall

finite form, the complete solution of (he problem would be

obtained. In this case, the two first, by the elimination of

j?.
would give the trajectory of the curve. This problem

ha^ exercised the skill of many eminent mathematicians from

thf time of Newton to that of L"gendre, but all their solu-

tions are very complicated. The trajectory may be described

from points by means of the two first equations, and tables

made for forming it at any inclination. Vide the memoir

of Moreau, in the eleventh cahier of the Journal de 1' Ecole

Polytechnique
1

. The descending branch of the curve has an

asyintote, as appears from making p indefinitely great, which

d p dp
gives cto T ;

and dz~j ,
or by integration, xcl ^

and zzzrc" -{ log. p, d and c" being constant quantities.
li

From these two equations it appears, that if p be indefi.

nitely increased, the valueof z will become indefinitely great,

although is does not increase so fast as />, and that of a? will

approximate to c' as its limit. If, therefore, on the hori-

zontal axis of x, at a distance equal to c', from the origin of

the co-ordinates, perpendicular be let fall, that line will be

an asymtote to the descending branch of the curve.

When the angle of projection of the body is very smaW

with respect to the horizon, and the initial velocity not con.

siderable, that part of the curve above the horizontal line of

projection may be readily found by approximation,, and is

applicable to th case of ricochet firing. Vide a jmemoir of

Borda am augst those of the Academic des Sciences,
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have * and/'=0 ; consequently /=# y' ^ and
fc

which give

These three equations contain the whole theory of

projectiles in a vacua P
; it results from the above,

that the velocity is uniform in an horizontal direction,

and in a vertical one, it is the same as that \vhich would

be acquired by the body falling down the vertical.

If the body falls from a state of rest, b will vanish,

and we shall have ~r=g* >' *=$gf >'
lae velocity

therefore increase? as the time, and the space increases

as the square of the time.

It is easy, by means of these formula?, to compare

the centrifugal force to th-it of gravity. It has been

shewn by what precedes, that v being the velocity of a

body moving in the circumference of a circle, whose

v z

radius is r, the centrifugal force is . J>t h be the

height from which it ought to fall to acquire the velo-

city v; we shall have by what precedes, v*

v 2 <2h

from which we may obtain =.. If ^rzr:fr, the

centrifugal force becomes equal to the gravity g ; thus

a heavy body attached to the extremity of a thread

fastened by its other extremity to an horizontal plan",

will stretch this thread with the same force as if it were

suspended vertically, provided, that it moves upon this

plane with the velocity which it would have acquired

by falling from a height equal to halt' the length of the

thread.



MECHANICS.

11. Let us consider the motion of a heavy body en a

spherical surface.

By naming its radius r, and fixing the origin of the

co-ordinates x, y, and z at its centre; we shall have

r* jt? y
% z*=0 ;

Ihis cqnntion compared with that

ofw=0, gives u=s* x* ^ s
2

: by adding there-

fore to the equation (f) of No. 7, the function lu mul-

tiplyed by the indeterminate \dr, we shall have

an equation in which we may equal separately to no

thing, the co-efficients of each of the variations 8#, ty
and J, which will give the three following equations.

!

I

dz

dt J

The indeterminate X makes known the pressure which

the moving body exerts against the surface. This pres-

sure is b7 No. Oequalto

it is consequently equal to 2xr
; but by No. 8, we have

dt 2

c being a constant quantity ; by adding this equatiom

to the equations (A) divided by dt
9
and multiplied re-

spectively by j?, y, and z ;N and observing, lastly, that

the differential equation of the surface is Q=
-f-scfs, which, by differentiation, gives
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we shall find

r

If we multiply the first of the equations (A) by y,
and add it to the second multiplied by #, we shall have

from integrating their sum
' yd* ,

dt

c? being a new constant quantity.
The motion of a point is thus reduced to three differ*

ential equations of the first order

xdx-\-ydyn=. zdz y

xdy ydjc-=x'dt y

By raising each member of the two first equations to

the square, and then adding them together, we shall

have

if we substitute in the place ot a?~\-y* its value r
2

x%

and in the place of its value c+2gz we

shall have, by supposing that the body departs from

the vertical,
rdz

fit - ----
.

The function under the root may be changed to (he

following form, (a z).(z b).(2gz-\-f} y ay b> and

f being determined by the equations

f_
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It is possible thus to substitute for the constant quan-
tiUe^ c and c' the new ones a and b ; the first of whu'h

is the greatest value of z, and the second the least. By
making afterwards

sn.
a b

the preceding differential equation will become

_ r.iAr a+b) d&

7
2
being equal to

~

The angle Q gives the co-ordinate z by means of the

equation

siz=a .cos .* 6-|-& . sin ,
2
0,

and the co-ordinate z divided by r, gives the co-sine

of the angle which the radius r makes with the vertical.

Let w be the angle which the vertical plane passing

by the radius r, makes with the vertical plane passing

by the axis of x ; we shall then have *

which give xdyydx=.(r
2-

z
2
J.d&; the equation

2rdyydx=.c
l
dt will also give

c'dt

* For \/r 2 z2 is the projection of the line r upon the

plane oi xy. and if from the extremity of y rz z* a perpen-

dicular be drawn to the axis of #, we shall hare V'r2 z*

: x : : rad. (1) : cos, r, therefore x~\/r2 s* . cos. w.

In a similar manner we shall have
5/zr-y/ r

z ^2 . sin. w.
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by substituting fors and dt their preceding values in 9,

we shall have the angle r in a function of 6; thus we

may know at any time whatever the two angles andsr;

which is sufficient to determine the position of the mov-

ing body.

Naming the time which is employed in passing from,

the highest to the lowest value of s
9
the semi-oscillation.

of the body ; let \ Trepresent this time. To determine

it, it is necessary to integrate the preceding value of dt

from Q=Q to 0=fx ; <n being the semi-circumference

of a circle whose radius is unity : we shall thus find

Supposing the point to be suspended from the extremity

of a thread without mass, which is fixed at its other ex-

tremity, it the length of the thread is r the point will move

exactly as in the interior ofa spherical surface, and it will

form with the thread a pendulum, the co-sine of whose

greatest distance from the vertical will be-. Jf we sup-

pose that in this state, the velocity of the moving body
is nothing, it will oscillate ^in a vertical plane, and in

this case we shall have a ir, 7
2
z^r -

. The fraction

^- is the square of the sine of half the greatest angle

which the thread forms with the vertical; the entire

duration Tof the oscillation of the pendulum will there-

fore be
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Jf the oscillation is very small,
~ is a very small

fraction, which may be neglected, and we shall have

the very small oscillations are therefore isochronous or

of the same duration, whatever may be thi j ir extent ;

and we can easily, by moans of this duration, and of

the corresponding length of the pendulum, determine

the variations of the intensity of gravity at different

parts of the earth's surface.

L<j
t z be the height from which gravity makes a

body fall during the time 7
1

, we shall have, by No. 10,

JSzzzrg
1

?'*, and consequently z=J
a
.r/ we shall there-

fore have with very great precision by means of the

length of a pendulum that beats seconds, the space

through which gravity will cause bodies to fall during

the first second of their descent. From experiments

Yery exactly made, it appears, that the length of a pen-

dulum vibrating seconds is the same, whatever may be

the substances which are made to oscillate : from

which it results that gravity acts equally upon all

bodies, and that it tends in the same place, to impress

upon them the same velocity in the same time.

12. The isoehronism ofthe oscillations of a pendulum

being only an approximation, it is interesting to know

the curve upon which an heavy body ought to move,

to arrive at the same time upon the point where its mo-

tion ceases, whatever may be the arc which it shall do



scribe from the lowest point. But to solve this problem

in the most general manner, we will suppose, conform-

ably to what has place in nature, that the point moves

in a resisting medium. Let s represent the arc de-

scrib'd from the lowest point to the cuivr, z the verti-

cal abscissa reckoned from this point ; dt the element

of the time, and g the gravity. The retarding force

along the arc of the curve will be, first, the gravity re-

solved along the arc ds, which becomes equal to g.
^

;

secondly, the resistance of the medium, which we shall

express by <p.f j~t \t ( J^)
be ing the velocity of the

moving body, and t \ being any function what-

ever of this velocity. The differential of this velocity

will be, by No. 7, equal to g. <p C^J ;
we shall

therefore have by making dt constant

ds\ ds . ds*
Let us suppose <p.

- =^. +. ,
and s=. .

,

if we denote by v'C^'O the differential of \}/ (s
1

) divided

by ds', and by V (s') that of 4' (s
1

) divided by ds', we

shall have
ds ds'

d-t=J-f V(s^
dis d1 s

1 d s'*

and the equation (i) will become >

o- *.<+-
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ds' 1

tve shall cause the term multiplied by to disappear

by means of the equal ion

0=Vl

(s')+
this equation gives by integration

h and q being constant quantity's. If we make s
1 to

commence with s, we shall have hq~=1 9
and

if, for

greater simplicity, we mak^ //=!, we shall have

c being the number, th;- hyperbolical logarithm of

which is unity : the differential equation (I) then be-

comes

dV . ds'

* The integral of 0=y'(s')+n.[4<'(s
f

)Ym*y he readily

found, by substituting for 4"(s')) and \|/' (s
1

) their values ;

f/Z g (Jig'
the equation then becomes Ozz -f w^, that by in

ds d s'

tegration gives h.log.Js h log. ds' -\-ns~e, or h. log. ,

c
ns

zze nsy from which we may obtain f/s'm
e
. efo

?
c being

the number whose hyperbolical logarithm is unity; the inte.

,ns e

gral of this equation is s
1

-{-<jcz ,
which gives h. log.(.n

L r e
(s

1

4-g)) ws e, or h. log.{w,(*' -f^) j

n
^- ~* ; if zrh.

lo
S'^I

then h>P' lo
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By supposing s
1

very small, we may develope Ihe last

term of this equation in an ascending series, with re-

spect to f he powers of s', which will be of this form,

ks'-\-ls
n
-\-8cc., i being greater than unity ; the last

equation then becomes

This equation being multiplied by
t

c ~T.{cos.

and afterwards integrated, supposing 7 equal to

ifar k >
will be changed into

m ' C dd
c ~*~.{cos.y^-4-.r/~~fsin,.7 j.

< U
L d t

f m \
f ^ _t

^c.

By comparing separately, the real and the imaginary
parts, we shall have two equations, by means of which
ds1

may be extracted ; but here it will be sufficient for

us to consider the following
ds' mt m

the integrals of <he second member being supposed t

commence with t. Naming T the value of t at the

end of the motion, when-* is nothing ; we shall have

at that instant

m T C m >
C ^~' s''

\ ^sM'yTy-cos.yT^^Lfs^dt.c.-s-
s'w.yt c.

K
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Jn the case of s' beinij indefinitely small, (lie second

member of the equation \vill be reduced to nothing
"when compared with the first, an:! we shall have

-.sJn.yT y.cos.yT/

from which we may obtain

iang.yT ^/

and as the time T is, by the supposition, independent

of the arc passed over, this value of the (ang.yTriad

place for any arc whatever, which will give for any
value of s'

m t

0=l.fs
n
.dt. cT.sin.yf-f&c.

the integral being taken from /zzzO, to t-=.T.

By supposing s' very small, this equation will be re-

duced to its first term, and it can only be satisfied by

making /.nnO ; for the factor cir.sin. y t being alwayg

positive from fc=0 to t=:T, the preceding integral is

necessarily positive in this interval. It is not there-

fore possible to have tautochronism but on the suppo-

sition of

which gives for the equation of the tautochronous

curve

In a yacnum, and when the resistance is proportional

te the simple Telocity, n is nothing, and this equation
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becomes gdz-=ksds ; which is the equation to the

cycloid *.

It is remarkable that the co-rfficient n of the part of

the resistance proportional to the square of (h* 1

ve'ocify,

does n >f enter into the expression of the time T ; and

ft is evident by the preceding analysis, that this ex-

pression will he t!i3 same, if \ve add to the preceding

law of the resistance, the terms

ds* .

If in general, 7? represents the retarding force along the

curve, we shall have

=+*
i is a function of the time t, and of the whole arc passed

* The cycloid is the only curve in a plane that is fautoch*

ronoiisin a vacuum, but this property belongs to an indefi-

nite number of curves of double curvature, which may be

formed by applying a cycloid to a vertical cylinder of any
base, without changing the altitudes of the points of the

curve above the horizontal plane. This is evident from

considering the equation *:z:c-f-2p of No. 8, *vhich by
ds* i

proper substitution becomes zzc %gz and gives d/zn
lit*

ds

T^ '

;
the upper sign being taken if t and s increase

yc^gz
together, and the lower, if one increases whilst the other

decreases. From this last equation it appears, that the

value of t depends upon the initial velocity and the relation

between the vertical ordinates and the arcs of the ?urve If

therefore thii velocity and this relation be the same, vrheu

the curve is changed, the above equation will not be altered

any more than the law of motion which it denotes.
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orer, which is consequently a function of t and of s.

By differentiating this last function, we shall have a

differential equation of the form

V being a function of t and $, which by the condition

of the problem ought to be nothing, when t has a value

which is indeterminate and independent of the arc

passed over. Suppose for example F=S. T1

, S being
a function of s alone, and Ta function of t alone ; w
shall have

<*^_T <M di s 1_1L <*S ds* , ^dT
d t

2 'ds' JT"**"' dt
~~

but the equation y=S T, gives ,
and consequently

--equal to a function of ; which function we will
dt ^ ,il t

denote by -^r^T* ^( "SJf )
' we

Such is the expression of the resistance which answer*

to the differential equation =ST/ and it is easy t

perceive that it comprises the case of the resistance

proportional to the two first powers of the velocity

multiplied respectively by constant co-efficientf.

Other differential equations would give different lawi

ef resistance.
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CHAP. III.

Of the equilibrium of a system of bodies*

33. 1 HE most simple case of the equilibrium of many

bodies, is that of two material points which strike each

other with equal and directly contrary velocities ; their

mutual impenetrability evidently destroys their velo-

cities, and reduces them to a state of rest. Let ui

now consider a number m of contiguous material points

disposed in a right line, and actuated by the velocity

#, in the direction of this line. Let us suppose, in like

manner, a number m1 of contiguous points, disposed

upon the same right line, and actuated by a velocity
'

directly contrary to z/, so that the two systems shall

strike each other. In order that they may be in cqui-

Hbrio at the moment of the impact, there ought to be a

relation between u and ' which it is necessary to de-

termine.

For this purpose we shall observe that the system m,
actuated by the velocity z/, will reduce a single material

point to a state of equilibrium, if it be actuated by a

Ttlocity mu in a contrary direction ; for each point ii
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the system will destroy a velocity equal to u in this last

point, and consequently its m points will destroy the

entire velocity mn : we may therefore substitute for

this system a single point actuated by the velocity mu.

We can, in like manner, substitute for the system in
1

a single point actuated by the velocity m'u' ;
but the

two systems being supposed to cause equilibrium, the

two points which take their places on^ht in like man-

ner to do it, this requires that their velocities should be

equal; we have therefore for the condition of the equi-

librium of the two systems wii/zizm'i/'.

The mass of a body is the number of *its material

points, and the product of the mass by its velocity is

called its quantity of motion
;

this is what is understood

by the force of a body in motion.

For the equilibrium of two bodies or of two systems

of points which strike each other in contrary directions,

the quantities of motion, or the opposite forces, ought
to be equal, and consequently the velocities should be

inversely as the masses.

The density of bodies depends upon the number of

material points which are contained in a given volume.

In order to have thrir absolute density, it would be ne-

cessary to compare their masses with that of a body
without pores ; but as we know no bodies of that de-

scription, we can only speak of the relative densities of

bodies ;
that is to say, the ratio of their density to that

of a given substance. It is evident that the mass is in

the ratio of the magnitude and the density, by naming

jfcfthe mass of the body, U its magnitude, and D its

density, we shall have generally M=DU: an equa-

tion in which it should be observed that the quantitiei

M9 D, and U express a certain relation to the unities

of their species.
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What we have said, is on the supposition that bodies

are composed of similar material points, and that they

differ only by the respective positions of these points.

But as the nature of bodies is unknown, this hypo-
thesis is at least precarious ;

and it is possible that there

may be essential differences between their ultimate par-

ticles. Happily the trnlh of this hypothesis is of no

consequence to the science of mechanics, and we may
make use of it without fearing any error, provided

that by similar material points, we understand points

which by striking each other with equal and opposite

velocities, mutually produce equilibrium whatever may
be their nature.

14. Two material points of which the masses are m
and m', cannot act upon each other but along the line

that joins them. In fact, if the two points are con-

nected by a thread which passes over a fixed pulley,

their reciprocal action cannot be directed along this line.

But the fixed pulley may be considered as having at

its centre a mass of infinite density, which re-acts upon

the two bodies mand m 1

, whose action upon each other

may be considered as indirect.

Let p denote the action which m exercises upon mf

f

by the means of a straight line inflexible and without

mass, which is supposed to unite the two points. Con-

ceive this line to be actuated by two equal and opposite

forces p and p, the force p will destroy in the body
m a force equal to p 9

arid the force p of the right line

will be communicated entirely to the body m 1
. This

loss of force in ?T?, occasioned by its action upon m'f

,
is

what is called the re-action of m' ; thus in the commu-

nication of motions, the re-action is always equal and

oootrary to the action. Fiom observation it appears
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that this principle has place in al! the forces of na-

ture.

Let us suppose two h ?zvy bodies m and m1 attached

to the extremities of nn horizontal right line inflexible

and without mass, which can turn freely about one of

its points.

To conceive the action of the bodies upon each other

when they produce the state of equilibrium, it is neces-

sary to suppose an indefinitely small bend in the right

line at its fixed point ; we shall then have two right

lines making
1

at this point an angle, which differs from

tAvo right angles by an indefinitely small quantity u. Let

fund f represent the distances m and m' from this

fixed point: by resolving the weight of m into two

forces, one acting upon the fixed point, and the other

directed towards m 1
: this last force \vill be represented

by^ : r 3 g being the force of gravity*. The

* Let mCm' (Jig. 8.) represent the lever, which is sup.

posed to be bent from (he horizontal right line mCn at (7, so

that the angle iw'Cwa;, then mC /jw'C' /', the line m rn

perpendicular lo the line mC continued ~uj
'

nearly, and

the line mm 1

joining the bodies m and m' rz:/-f-jf
'

nearly.

Complete the rectangular parallelogram mnrn'o, and suppose
mo or its equal nm

1

to represent the weight of m; this force

may be resolved into two others, represented in quantity
and direction by the lines mm r and m' o ; we shall (hen have

mo~nm' (uj
1

) to mm 1

(f+f), as mg (the weight of m)

is to ~ .** - or the force with vhich m acts upon the

*/

body m
1

. The force with which m1

acts upon m may be

found in a similar manner.
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action of m' upon m will in like manner be /.

*i/

by equalling these two forces, in consequence of their

equilibrium, we shall have vnf=.m'f ;
ttiis gives the

known law of the equilibrium of the kver, and at the

same time enables us to conceive the reciprocal action

of parallel forces.

Let us now consider the equilibrium of a system of

points 772, m' 9
m"

9
&c. solicited by any forces whatever,

and re-acting upon each other. Let /be the distance

of m from m' ; /' the distance of m from m" ; and/
/y

the distance of m 1 from m", &e. ; again, let p be the

reciprocal action of m upon m' ; p' that ofm upon m" :

//that of m' upon ra"&c., lastly, let mS,m'S
f

)m"S",&c.

be the forces which solicit m, m 1

, m", &c. ; and s
, .v',

s", &c. the right lines drawn from their origins unto the

bodies m, m'^ m", &c.

This being agreed upon, the point m may be con-

sidered as perfectly free and in cquilibrio, in conse-

quence of the force mS, and the forces which the bodies

m,m' 9
m H

9
&c. communicate to it : but if it were sub-

jected to move upon a surface or a curve, it would be

necessary to add the re-action of the surface or of the

curve to these forces. Let $s be the variation of s, and

let ^/denote the variation offtaken by regarding m1 as

fixed. Denoting in like manner, by S
7 f

7

,
the variation

off ,taken by regarding m 11 as fixed, &c. Let R and

R' represent the re-actions of two surfaces, which

form by their intersection the curve upon which the

point m is forced to move, and Sr, $r' the variations of

the directions of these last forces. The equation (d)
of No. 3, will give
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In like mannrr, m 1

may be considered as a point

which is perfectly free and in cquilibrio, in consequence

of the force m'S', of the actions of the bodies m, m",

&e., and of the re-actions of the surfaces upon \yhich

it is obliged to move ; which re-actions we shall denote

by R" and R"1
. Let $s' be therefore the variation of

s
'

5 ^///*h e variation of'/*, taken by regarding m as

fixed ; S^'the variation of/
77

, taken by regarding m'J

as fixed, &c. Moreover let W and or 11 ' be the varia-

tions of the directions ofR 11 and R" 1

;
the equilibrium

of m' will jjive

Qm'S' fc4-p.yifpU/'4-&c. . 4-j?
/7.V7

-f72 77V.
if we form similar equations relative to the equilib-

rium of 77Z
77

,
W7

', &c. ; by adding them together and

observing that*

'+V ; *c.

* The ninth diagram will serve to render this more evi.

dent. Suppose that the line joining the bodies m and m1 h

represented by/y that the point m' being immoveable, the

point m passes over the indefinitely small space mn. Join

nm'
; from the point n let fall the perpendicular na upon the

line mm'
,
then ma will represent the projection of the line

mn upon the line mm'
,
see notes No. 2, and we shall have

ma~mm'(f) am 1

,
but am' 2 m'n 2 naz

,
and as na 1

is an

indefinitely small quantify of the second order, it may be

neglected, therefore am'nm' nearly, consequently ma
mm' (f) wm/zz^/. Again, let m1

be supposed to pass

over the indefinitely short space m'n 1

\ whilst m remains im-

moveable, join mn
1

,
then mm 1

mw'zz^/. If m and m 1 be



LAPLACE'S MECHANICS. 75

$/,&/', &c. being the whole variations of/, /', &c.

we shall have

0=2. m. S.^+2.p.5/+S. ft.Sr, f A'J

an equation in which the variations of the co-ordinates

of the different bodies of the system are entirely arbi-

trary. It should here be observed that instead of

m*S.$s, it is possible in consequence of the equation

(a) of No. 2, to substitute the sum of the products of

all the partial forces by which m is actuated, multiplied

by the variations of their respective directions. It is

the same with the products m'SUs', w/'SW, &c.

If the bodies w,m', m'1

,
&c. are invariably connected

with each other, the distances/,/', /", &o. will be con-

stant, and weshall have for the condition of the connec-

tion of the partsof the system,&/=0,S/':zr.O,&f''=(),&c.

The variations of the co-ordinates in the equation (k)

being arbitrary, we may subject them to satisfy these

last equations, and then flit- forces
;?, p', p'

1

,
&c. which

depend upon the reciprocal action of the bodies of the

system, will disappear from this equation : we can also

cause the terms /?.Sr, 7 J

'.S>', &e. to disappear, by sub-

jecting the variations of the co-ordinates to satisfy ihe

equations of the surfaces upon whrrh the bodies are

forced to move, the equation (k) flni* becomes

Q=2.m.S.**; (I)

from which it follows, that in the case of equilibrium,

the sum of the variations of the products of the iorccs

supposed to vary at thp same timp, and move respectively to

n atul w', let n and n' b<j

joiftfd, tlu n VVP shall have mm 1

nn'$f$ lf-\-$lif, by neglecting iucltfiaitelv small quantities

of higher orders than the first.
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by the elements of their directions is nothing, in what-

ever manner we make the position of the system to

vary, provided that the conditions of the connection of

its parts be observed,

This theorem which we have obtained on the parti-

cular supposition of a system of bodies invariably con-

nected together, is general, whatever may be the con-

ditions ofthe connection of the parts of the system. To
demonstrate this, it is sufficient to shew, that by sub-

jecting the variations of the co-ordinates to these con-

ditions, we shall have in the equation (k)

but it is evident that r, r', &c. are nothing, in con-

sequence of these conditions ; it is therefore only re-

quired to prove that we have OzzzS.p.S/, by subjecting

the variations of the co-ordinates to the same conditions.

Let us imagine the system to be acted upon by the sole

forces p, p'y p", &c. and let us suppose that the bodies

are obliged to move upon the curves which they would

describe in consequence of the same conditions. Then

these forces may be resolved into others, one part q,

q'l q", &c. directed along the lines /, /S/", &c. which

would mutually destroy each other, without producing

any action upon the curves described ; another part T,

T'
9 T", &c. perpendiculars to the curves described,

laitly, the remaining part tangents to these curves, in

consequence of which the system will be moved*. But

* la (Jig. 10) where only two bodies m and ml are con.

sidered, mm1

is the line joining the bodies, AmB the curve

upon which m is forced to remain, mp the force p that acts

upon m in the direction of the line mm' or/5 rp or q that
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it is easy to perceive that these last forces ought to be

nothing ; for the system being supposed to obey them

freely, they are not able to produce either pressure

upon the curves described, or re-action of the bodies

upon each other ; they cannot therefore make equilib-

rium to the forces p, />', p", &c. q, <?', q", &c.

7", T', T", &c. ; it is consequently necessary that

they should be nothing, and that the system should be

in equilibrio by means of the sole forces p, p
f

,

p", &c. q,q',q", &c. TjT^T^&c. Let*/, &', &c.

represent the variations of the directions of the forces

T, T', &c. ; we shall then have in consequence of the

equation (k)

but the system being supposed to be in equilibrio by
means of the sole forces

<?, q', &c. without any action

resulting upon the curves described ; the equation (k)

again gives 0=2. .y, which reduces the above to the

following

If we subject the variations of the co-ordinates to an-

swer to the equations of the described curves, we shall

have ^/zzziO, Jt
v=0, &c. and the above equation be-

comes

as the curves described are themselves arbitrary, and

part of it which is destroyed by the mutual action of the

the bodies without producing any effect upon the curve

AmB) mr the remaining force of
;;,

which is resolved into

the force wT, or T that acts perpendicularly to the curve,
and Tr which acts in the direction of a tangent to it.
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only subjected to the conditions of the connection of

flie parts of the system ;
the preceding equation !ms

place, provided that these conditions be fulfilled, and

then the equation (k) will be changed into the equa-

tion (I). This equation is the analytical traduction of

the following principle, known under the name of the

principle of virtual velocities.

" If we make an indefinitely small variation in the

position of a system of bodies, which are subjected to

the conditions that it ought to fulfil : the sum of the

forces which solicit it, cnch multiplied by the space

that the body to which it is applied moves along its di-

rection, should be equal to nothing in the case of the

equilibrium of the system."
*

* The following are proofs of the truth of the principle of

virtual velocities in the cases of the lever, the inclined

plane, and the wedge.

First, with respect to the lever; let mCnt (Jig. 11.J re-

present a straight lever in equilibrio upon the fulcrum G\ by
means of the forces S and S' acting in the respective direc-

tions of the lines mS~s, and m'S'ms' ; if this lever be S'.ID-

posed to be disturbed in an indefinitely sn all degree, so that

m and m1 describe the arcs mn and m'ti
1

respectively, and

perpendiculars na and n' b be drawn from n and n'
, upon

the directions of the forces S and $'', we shall have mn~
c$, and m' 5*'. Let the perpendiculars Cc arid Cd be

drawn to the directions of the forces S and S1 from the ful.

erum 67, then as the indefinitely small arcs mn and m f
t? may

be supposed rectilinear, and the angles Cmn and Cm'n' right

angles, we shall have ang. awzwzzang. mCc, and ang dCm*

cziang. n'm' 6
?
and consequently the rectangular triangles
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This eqnn'ion lias not only place in the case of equi-

librium, but it assures its existence. Suppose that the

amn, mCc, and dCm' ,
ri m'b respectively similar, therefore

by proportion

ma : mn : : Cc : Cm,
also

m'b : m'n' : : Cd : Cm'

which give wzflizr Cc. and m'b r Cd, consenuent.
(J m C m1

ly 3s = .Cc, and s'~ -. Cd. Let these va.J Cm Cm 1

of cte and ^' be substituted in the equation of virtual

velocities

observing that rz 77- ~r i
and we shall find that S.Cc

6 m C in

S'.Cd; which h a well. known property of the lever.

In the case of the inclined plane, let the twelfth diagram
be supposed to represent a section formed by a plane passing

through the centres of gravity m and m ;

,
of two weights in,

equilibrio upon two inclined planes AB and L'C, which

have the common altitude ?JD, the weights being connected

by a s'ring passing over the pulley P. Let the position of

the weights be changed so that their centres of gravity m and

m 1

may pass through the indefinitely small spaces mn and

m'n1

respectively; from m and in
1

let the lines fwzz$, and

m'S's 1 be drawn in the direction of gravity, and suppose

the weight of the body resting upon AB to be represented

by S and tbat of the body resting upon BC by S 1

: from n

and ' draw the perpendiculars na and n'b respectively to

the lines mS arid m'S' ,
or their continuations. Then as the

lines forming the triangle nma&re respectively parallel to (he

lines forming the triangle ABD, the triangles are similar :
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equation (I) having place, the points wz, m' &c. take

the velocities v, tf, &c. in consequence of the forces

fora like reason the triangles m' n' b and BCD are similar :

we hare therefore

AB : BD : : mn : ma,
EC : BD : : m' ri : m' b,

consequently ma-.mn and m 1 -
?
,m' ri . If in the

Ait Jj L

equation of virtual velocities

T? JTJ

as $s=ma and ^'zr m' b, their respective values-- . mn
A13

and .m'n' are substituted, we shall, as mn m' n'
;

easily obtain the following equation S.BC~S' .AB, which

shews that the weights have the same ratio to each other as

the lengths of the planes upon which they rest have f

, this is

well known from other principles.

Lastly, in the case of the wedge, let ABC (Jig. 13), re-

present the section of a wedge, and the plane MN upon
which it rests in equilibrio, from the perpendicular pressures

of the forces S and S' upon its sides AB and AC^ in the di-

rections mS~s and m1 S'$' respectively. Suppose that in

consequence of an indefinitely small variation in the situation

of the wedge, it takes the position abc, its sides meeting the

directions of the forces or their continuations inw and w', it

is evident that the small right lines mn and m' n' will be the

spaces passed over by the powers S and *S" ,1-in their respec-

tive directions. Join Aa^ and let CA and ba be prolonged

until they meet at jP, and from the points A and a let the

perpendiculars AH and Ag be drawn to the prolongations,

then we shall evidently have iririGct) and mn-
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mS, m'S', &c. which are applied to them. The sys-

tem will be in equilibrio by means of these forces, and

the forces my, m'vf

, &c. denoting by $v
9 cto', &c.

the variations of the directions of the new forces, we

shall have from the principle of virtual velocities

but we have by the supposition Q=2,.mS.$s ; we shall

therefore have Q=-2,.m.v$v. The variations $y, W9

&c. ought to be subjected to the conditions of the sys-

tem, they may therefore be supposed equal to ydt, v'dt9

&c. and we shall have 0=2. ?wt)
a
, which equation gives

<a=0, D'=O, &c. ; therefore the system is in equilibrio

in consequence of the sole forces mS, m'S' &c.

As the lines aF and aA are respectively parallel to the lines

AB and BC, the triangles ABC and FaA are similar, con.

sequently
AB : AC : : Fa : FA

,-

we have likewise, as the right angled triangles FaG and

FAH
t by having a common angle at F

9
are similar,

aG : AH : : Fa : FA,
therefore

AB : AC : : aG : AH.

This last equation, as AH~mn~ &s and Gn m' rf. ^/
3

A C
gives $s zn -777.

$s' ;
If this value of $s be substituted in

the equation of virtual velocities

we shall obtain the following, S.AC=S' .AB, ^hich shews

that when the wedge is in equilibrio, the powers acting upon
M
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The conditions of the connection of the parts of the

system, may at all times bo reduced to certain equa-
tions between the co-ordinates of its different bodies.

Let u=0, u f

=ft, "=0, &c. be these different equa-

tions, we shall be enabled by No. 3, to add to the

equation (I) the function
*..3u-\-\'.$u'-{-*

r/3u rl

-\-8cc.,

or S. \.oit; X, X', X'
7
, &c. being indeterminate functions

of the co-ordinates of the bodies ; the equation will

then become

in this case (he variations of all the co-ordinates are

arbitrary, and we may equal their co-efficients to no-

thing ;
which will give so many equations, by means

of which we can determine the functions X, X' &c. If

we lastly compare this equation with the equation (k)

we shall have

from which it will be easy to find the reciprocal actions

of the bodies w?, m'
9 #c. and the pressures 7?, R 1

',

#c. that they exercise against the surfaces on which

they are forced to remain *.

it are to each other as the sides of the wedge to which they

are applied, which is a well known property of it.

The principle of virtual velocities may readily be proved
in the cases of tbe wheel and axle, the pulley, the screw, &c.

and holds good in every case of machinery in equilibrio.

* The following examples, extracted from the Mechanique

Analytique of Lagrange, will serve to shew the facility with

which the principle of virtual velocities may be applied to

Ihe solution of various problems.
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15. ]f all the bodies of a system are firmly attached

together, its position may bo determined by those of

It may here be premised, that the forces which act upon

any point or body will be supposed to be reduced to three,

P, Q, and R
9 acting respectively in the directions of the

co-ordinates ar, y^ and z
9
and tending to diminish them.

The quantities belonging to the different bodies will be dis-

tinguished by one, two, three &c. marks according to the

order in which they are considered. Thus the sum of the

moments of the forces which act upon the bodies will be

P.fcc + Q.&H-fl.fc-f-F .**' +Q' .*y -fR .$z' -f F'.^"-f-c.
To this must be added, the differentials of the equations of

condition, each multiplied by an indeterminate quantity.
Let us first consider the problem of three bodies firmly at-

tached to an inextensible thread. In this case, the condi-

tions of the problem are, that the distances between the first

and second, and between the second and third bodies, will

be invariable
; these distances being the lengths of the por-

tions of the thread intercepted between them. Let/be the

first of these distances, and g the second, we shall then have

5/izzO, and c^frzO, for the equations of condition, therefore

w / and w' o^, and the general equation of equilibrium
will become

The values of/and g are

therefore

5 f _(^
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three of its points which are not in the same right line ;

the position of each of its points depends upon three

these values being substituted will give the nine following

equations for the conditions of the equilibrium of the thread,

Jl_
M

=0.

It now remains to eliminate the two indeterminate quanti

ties x and A1

from these equations, which may be done vari
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co-ordinates, this produces nine indeterminate quan-

tities ; but the mutual distances of three points being

otis ways, each of which will give equations, either different,

or presented differently, for the equilibrium of the three

bodies.

It is evident that if we add the three first equations to the

three next, and to the three last, we shall obtain the three

following equations delivered from the unknown quantities

X and A*.

P+P'+P" 0,

R+R'+R"=0,

which shew, that the sum of all the forces parallel to each of

the three axes of x
9 #, and s

9
should be nothing.

There now remains four more equations which it is ne-

cessary to discover ; for this purpose, if the three mkldlq

equations are respectively added to the three last, the three

following will be obtained, which do not contain A' .

by the extraction of A, the two following will be obtained.
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given and invariable, we are enabled by their means

to reduce these indeterminates to six others, which

R4-R"
x x

Lastly, considering the three final equations, by extracting

from them, we shall have the two following,

These seven equations contain the conditions necessary for

the equilibrium of three bodies, and when joined to the given

equations of condition u and u1

,
will be sufficient for deter.

mining the position of each of them in space.

If an inextensible thread be charged with four bodies,

acted upon respectively by the forces P, (2 5
R

',
P

, (2', R 1

;

P"
, Q" , R", &c. in the directions of the three axes of x,y y

and 2
;
we shall find by similar proceedings, tbe nine follow-

ing equations for the equilibrium of these four bodies,

Q! -f Q"+Q'" (P'+P"+F"J=*,
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substituted in the equation (I), will introduce six ar-

bitrary variations ; by equalling their co-efficients to

TV , ntr i pv/it + it -fit

Q"H-Q'" "V"^

^--SzS-^- '

^/// ^/f
vxirf *** 2 _

It would be easy to extend this solution to any number

of bodies, or to the case of the funicular or catenarian

curve.

The solution would have been in some respects simplified,

if the invariability of the distances f g 9
&c. had been direct.

ly introduced into the calculation.

Thus, confining ourselves to the case of three bodies, and

denoting by %J/ and 4^ the angles which the lines/ and g
make with the plane of x and y and by p and

<p'
the angles

which the projections of the same lines upon the same plane
make with the axis of ,r, we shall have

cos.xj,: z' ? jf.sin.%^;

n' 7 ' f

Substituting th values of xf

, y, 2', cr
f;

, y", and z" obtained
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nothing, we shall have six equations that will contain

all <Iie conditions of the equilibrium of the system ; let

us proceed to dev^elope these equations.

from these equations, in the general formula of the equilib-
rium of three bodies

and simply causing the quantities x^ y, 2, 9, <p', -v]/, 4^, whose

variations will remain indeterminate, to vary, and equalling

separately to nothing the quantities multiplied by each of

these variations, we shall have the seven equations

P"sin.' Q"cos.<p' 0,

n.p'sin.4/ ^"cos.^' 0,

of which the five first coincide with those found before in

Che question of tkree bodies connected by an inextensible

thread, by the elimination of the indeterminate quantities x

and A'; and the two last are readily reduced by eliminating

Q' and Q", by means of the fourth and fifth equations.

But if by this means we have more readily obtained the

final equations, it is because we have employed a preliminary
tranformation of the variables which coatains the equations
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For this purpose, if.r, y, z be the co-ordinates of m ;

#',y, z' those of m 1

;
x'1

, y" 9 z" those of m 11

, &c, \v

shall have

of condition, instead of immediately employing the equations
with indeterminate co-efficients as before, so that the equa-
tion is reduced to'a pure mechanism of calculation. More-

over, we have by these co-efficients the value of the forces

which the rods/ and g ought to sustain from their resistance

to extension, as will be shewn hereafter.

If. the first body is supposed to be fixed, the differentials

S#, oy, and $z vanish, and the terms affected by these differ,

entials, will disappear of themselves from the-general equa-
tion of equilibrium. In this case, the three first equations

p_A.iJZf o, <2_A/I^ o, and R *.
Z =o, wiH

u u u

not have place, therefore the equations, P-fP'-fP''-^^.

=0, -r-<2'-r-Q"-f&c. 0, tf-f#'-fft"-h&c. 0, will not

have place, but all the others will remain the same. In this

case, the thread is supposed to be fixed at one of its ex.

tremities,

If the two ends of the thread be fixed, we shall have not

only ^r 0, fyzzO, 8 0, but also S^'&c. Q, Sy/'&c.o,
$:///&c -

;
and the terms affected by these six differentials,

in the general equation of equilibrium, will consequently

disappear, as well as the six particular equations which de-

pend upon them.

In general, if the two extremities of a thread are not en-

tirely free, but attached to points which move after
gt given

law
; this law expressed analytically, will give one or more

equations between the differentials &r, //,
and 0.5, which re-

late to the first body, and the differentials Ix'U&z-, y&c.^
5?///&c. ?

which relate to the last
;
and it will be necessary to

add tkese equations^ each multiplied by a new indeterminate
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&c.

co-efficient, to the general equation of equilibrium found

above ;
or to substitute in the general equation, the value

of one or more of these differentials obtained from the above

equations, and lastly to equal to nothing, the co-efficient of

each that remains. As this is not attended with any diffi.

culty, we shall omit it.

In order to discover the forces which arise from the re-

action of the thread upon the different bodies, we will, in

the present case, consider the equations

^
^ >-^ <-

&c.

With respect to the first body whose co-ordinates are #,

$u xl x $u y y .lu z' z
and *>

s-?=
-

' r,=
-
~r '

and
*=
-

we shall therefore have

Therefore the first body will be acted upon by the other

bodies with a force A, the direction of which is perpendi-

cular to the surface represented by the equation S / 0,

supposing the quantities #, ^, and z to vary ;
but it is evi-

dent that this surface is that of a sphere, having / for

its radius, and x',y,and z' for the co-ordinates of its centre,
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If we suppose

consequently the force A will be directed along this same

radius, that is, along the thread which joins the first and

second bodies.

With respect to the second body whose co-ordinates are

*', y, s',
we have

u_x r x S u_y y I u_ z' z

is7 ^f~ ) %7 7' * *T~i f *
ox of oy j o~ /

therefore

_

from which it follows, that the second body will also receive

a force X directed perpendicular to the surface whose equa-
tion is ^Mzn^/nrO, supposing a?', y'y

and 2' alone to vary.
This surface is that of a sphere, having/ for its radius, the

co-ordinates #, #, and z of the first body corresponding to

its centre
; consequently the force that acts upon the second

body, will be also directed along the thread /, which joins
this body to the first.

With respect to the second body, we also have

&/_ y7
of 8tt'_ yy y j'_

"
**

far-- ~T~' y- r/ W-" "T"/
therefore

The second body will therefore be acted upon by a force

qual to A', the direction of which will be perpendicular <e
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we shall have ^ 0, 5/'=0, Sf" &c. ; llic.ncces-

sary conditions will therefore be fulfilled, anJ in con-

the surface represented by the equation S'/~0, by making

x', y, and z' to vary. This surface is spherical, having g
for its radius

;
therefore the direction of the force V will be

along this radius, that is, along the line which joins the se-

cond and third bodies.

Similar conclusions may be drawn with respect to the other

bodies.

It is evident that the force X which acts upon the first

body, along the direction of the thread which joins it to the

next, and the equal but directly contrary force A, which acts

upon the second body along the direction of the same

thread, are merely the forces resulting from the re-actioa of

this thread upon the two bodies, that is, from the tension of

that portion of the thread which is included between the

first and second bodies ;
therefore the co-efficieut A will ex.

press the force of this tension. In like manner, the co-effi-

cient A7

will express the tension of that part of the thread

which is intercepted between the second and third bodies,

and so on with the rest.

It has been supposed in the solution of this problem, that

each portion of the thread was not only inextensible, but

likewise incompressible, so that it always preserved the same

length, consequently the forces A, A', &c. only express the

tensions when they are positive, and their actions incline

the bodies towards each other ; but if they are negative, and

tend to make them separate to a greater distance from each

other, they rather express the resistances which the thread

opposes to the bodies by means of its stiffness or iiicom.

pressibility.

To confirm what has been demonstrated, and at the same

time to give a new application of these methods, w will sup-.
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sequence of the equation (I) the following may bs

obtained

pose that the thread to which the bodies are attached is
elastic,

and susceptible of extension and contraction, and that jP, ?,

c. are the forces of contraction of the portions/, g-, &c. of

the thread intercepted between the first and the second bodies,
and between the second and the third &c.

It is evident from what has preceded, that the forces F^G
&c. will give the moments F.y+G.$<r-{-&c. or X.^M-fV.^'
-f &c.

It is therefore necessary to add these moments to those

which arise from the action of the forces which are repre.
setited by the formula P. frr-f-Q.fy-f- ??. <i*-{-P .^.v

!

-%-Q
!

.$y' --]-

R'.$z'+ P".3x"-}-&c. ;
and as there are no other particular

conditions to fulfil relative to the situation of the bodies,
the general equation of equilibrium will be as follows P. fa

c.r=0.

By substituting the values of S/, 5^, &c. found above, and

equalling to nothing the sum of the terms affected by each of

the differentials Jr, 2[y, &c. we shall have the following equa.
tionsfor the equilibrium of the thread in the present case,

R- 1

P+
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0=2.mS. I
~

);
\ J

!-); Cm)

These equations are analogous to those of the case ia which

the thread is inextensible, and give by comparison xrzF,

X'm6?, &c.

It therefore appears that the quantities F9 6r, &c. which

here express the forces of threads supposed elastic, are the

same as those which have been found before to express the

forces of the same threads, on the supposition that they were

inextensible.

Let us resume the case of an inextensible thread charged

with three bodies, supposing at the same time that the second

body is moveable along the thread ; in this case the condi-

tion of the problem will be, that the sum of the distances be-

tween the first and second bodies, and between the second and

third is constant : denoting as before, by / and
,

thest
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which are three of the six equations that contain the

conditions of the equilibrium of the system. The se-

distances, we shall have/-f g- equal to a constant quantity,
and consequently eJ/'+^zzO.

In this case $f+$g=z$u, and consequently *($f+$g) or

A&M must be added to the general equation of equilibrium,
which will become

If the values of $f and $g are substituted, and the sum of the

terms which are multiplied by the differentials $x
9 2^, &c.

equalled to nothing, the following equations, which are suf-

ficient for the equilibrium of the thread, will be obtained,

R A. rr^zrO,
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cond members of these equations are the sums of the

forces of the system resolved parallel to the three axes

ZH_ J

#"+x.--=0.
g

It is only necessary to extract the indeterminate quantity X

from these equations.

From the above examples it is easy to perceive how we may
extend the question to a greater number of bodies, of which

the end ones may be supposed fixed, and the others moveable

along the thread.

Let us now suppose that the three bodies are united by in-

flexible rods, and obliged always to remain at the same dis.

tance from each other ;
in this case, if h be supposed to

denote the distance between the first and third bodies, we

shall have S/znO, %zr0, and S^zzO ; consequently by having
three indeterminate co-efficients, the general equation of

equilibrium will become

u+*!M +*".W=o.

The values of /, and
,g-,

or "Su and $u' have been given be.

fore ;
that of SA, as

will be

^_(^-^)(^
;-

By making these substitutions, and equalling to nothing <h

sum of the terms affected by each of the differentials $x
9 ty

&c. we shall obtain the nine following particular equations
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.r, y, and s : each of \vhich suras should be equal (o

nothing in (ho case of equilibrium.

K'+x. ~.x'-^i 0,

It will be necessary to extract from them the three unknown

indeterminate quantities A, X'
,
and x", by which means six

equations will be obtained to determine the conditions of

equilibrium.

It is evident from the form of these equations, that by add.

ing respectively the three first to the three next, and after.

wards to the three last, the three following equations will be

obtained, which are free from the quantities X, x', andx",

=0.

Is would be very easy to find three other equations by
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The equations *f=0, y=0, */"=0, &c. will be

also satisfied, if -we suppose 3, s', s", &c. invariable

quantities, and if we make

extraction of A, A', and x" ;
but this may be done in a much

readier and more general manner, by deducing these nine

equations from those given above.

/

S

These equations are evidently analogous to the primitive

ones, and give in the same manner, by addition, the three

following equations,

p^Qa+py_QV+ P////_Q"^ =0,
PzRx+ P'^HV+PV Jt^ 0,
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&c. &c.

The three first equations shew, that the sum of the forces

parallel to each of the three axes should be nothing, and the

three last contain the known principle of moments (under-

standing by that term the product of the power by its dis-

tance, as in the case of the lever), from which it appears,

that the sum of the moments of all the forces to make the

system turn about each of the three axes, is likewise nothing.

If the first body be fixed, the differentials &e, Sj/, and 5s

will vanish, and the three first of the nine equations first

given will not have place ;
we shall in this case have only six

equations, which by the extraction of the three indeter-

minates A, V, aud A", maybe reduced to three.

In order to obtain these three equations we may proceed
in a manner analogous to that made use of to discover the

three last equations of the preceding question; provided
we take care that the transformed ones do not contain the in-

determinates X, and V, which enter into the three first, of

which it is necessary to make abstraction. This will be ob-

tained by the following combinations.

s
\ /.v,' r\f*!i ->t\
) \* ^ /\* ~ )_ ~_ =0

,



100 LAPLACE'S MECHANICS.

Ssr being any variation whatever. By substituting
these values in the equation (I), we shall have

0=2.mS. ? r

If we add the three first of these equations to the three last,

the three following will be obtained,

0,

These will always have place, whatever may- be the state of

the first body, as they are independent of the equations rela.

tive to it. These equations contain the principle of mo-

ments, with respect to the axes passing through the first

body.
Let us suppose a fourth body attached to the same in.

flexible rod, having ,.?'% y"
1

9
and z'" for its three rectangular

co-ordinates, and P'/;

, Q
//f

,
acd R"1

for the three forces pa-

rallel to these co-ordinates.

It will in this case, be necessary to add the quantity

P"'M"+@". S/'-fJi'".^" to the sum of the moments of

the forces. As the distances between all the bodies ought

to remain constant, we shall have by the conditions of the

problem, not only 5/rrO, ^rzO, tMizzOj as in the preceding

case, put also SfcO, S^zzO, and JwzzO ; naming the dis.

tancvs of the fourth body from the three others 1
9 m, and n.

The general equation of equilibrium will in this case be.

come

*.^
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If, is evident that we may in this equation change either

the co-ordinates #, #', x", &c. or y^y'^y"^ &c. into

The values of 5/, ,
and oA, are the same as before, and

(hose of SJ, a??!, and Sra. or 5 v/
, &'*, and Swv , as

are

m

By making these substitutions, and equalling to nothing the

sum of the terms of each of the differentials &*?, ^//, &c,, we
shall find twelve particular equations ;

(he nine first of which

which will be the same as those in the case of three bodies

if the following quantities were respectively added to their

fir.st members.

fa ii^ i'
y~y 'n

~ !

'_ z
,

A .
,

\ !l

/
J

* S

xffl x '

ty
/ ? //y

'

z
>

9

-XV .

and tbe three last will be
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, %', z", &c. which will give two other equations that

re-united to the preceding, will form the following

system

; (n)

/

As there are twelve equations in
all, and six indeter-

minate quantities x, A', ^",
7̂/

5
Aiv

5
xv , to eliminate, there

will only remain six final equations for the conditions of

equilibrium, as in the case of three bodies ; and we shall find

by a method similar to one given before, these six equations

analogous to those found in that case,

P+P'+P+Pf"=0,
Q+Q'+Q''+Q'=0,

QW+pny Q"ix >

=0,

=0.
Instead of the three last, the three following equations

may be substituted, which can be found by a method given

before. As they are independent of the equations relative

to the first body, they possess the advantage of always having

place, whatever may be the state of this body.
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the function S.wS.y. ( ^- )Iis by No. 3, the sum of
\o XJ

the moments of all the forces parallel to the axis of #,

Q"(s'z)R'"(y'yy=S).

Let us now consider the case of three bodies joined by a

rod which is elastic at the point where the second body is

situated, the distances between it and the other bodies being

constant, but the angles which the lines form variable. Let

us suppose that the force of elasticity, which tends to augment
the angle formed by the lines which join the second body to

the two others, is represented by J3, and the exterior angle,

formed by one of these sides and the prolongation of the

other, by e
; then the moment of the force E ought to be re-

presented by E3e 9
or its equal rt'.W ; therefore the sum of

the moments of all the forces of the system, as o/ 5 ^gzzO,
will be

It is now only required to substitute the values of Sw, */-,

and lu" : those of JM and Sw' are the same as in the first

question, but with respect to that of u" or Se, it may be

observed, that in the triangle, of which the three sides are

jf, g, and
7i,

or the distance of the first body from the third,

180 e is the angle opposite to the side h ; therefore by
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which would cause the system to revolve about the axis

of s. In like manner, the function 2.mS.x.(~} is

V,yy

f
a
-f a-2_ /jZ

trigonometry cos.d --^ -
j which by differentia.

tion gives the value of $eor ou" : as by the conditions of the

problem 2/ 0, SginO, it will be sufficient to make e and k

vary, we shall therefore have oe ^ 7/~---'
. This

Jg-sin.e

value being substituted in the preceding equation, it

evidently become of -(he same form as the general equation

of equilibrium given in the case of three bodies joined to.

gether by an inflexible rod
; by supposing in it that V'zz

Eh
-

:

-
: the particular equations will necessarily be the

fg sm.e

same in the two cases, with this sole difference, that in the

rase above mentioned, the quantity
A" is indeterminate, and

consequently ought to be eliminated ;
but in (he present

case it is known, and there are only two quantities A and A 1

to eliminate, consequently there will be seven final equations

instead of six. But whether the quantity
X" is known or

not, it may be eliminated along with the two others,
X, and

M
; we shall therefore have, in the present case, the same

equations as were found in the case of three bodies at.

tached to each other by an inflexible rod : to find the

seventh equation it will only be necessary to eliminate /-

from the three first, or M from the three last of the nine par.

ticular equations of the above case, and to substitute for

1?7i

t*u jt value -v.
jg siu. e

If S/ and <? had not been supposed to vanish in the value
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the sum of the moments of all the forces parallel to the

axis of ^/, which would cause the system to turn about

the axis of %
9
but in a different direction to the first

forces; the first of the equations (n) consequently in-

dicates, that the sum of the moments of the forces is

of &?, it would have been of this form !$e nr 7 :

-- 4-
Jgsm. e

,
A and B being functions of/, g, h, and sin. e

;

in this case, the three terms X.&M+X' .SM'+X".^'' of the ge-

neral equation, would become (EA-\-x). JM-J- (EB-\-*.'J

. u' -
:

---,5A : but A and V being two indeterminate
/T sin. e

quantities, it is evident that x E^. and x' EB may be

substituted for them, by which means the quantity treated

upon will become x.&j-f A'.J^' --.5 A, the same as
fg sm.e

when /and 5- did not vary in the expression of Hie.

If many bodies be supposed to be joined together by elastic

rods, we shall find, in the same manner, the proper equa.
tions for the equilibrium of these bodies. The above me-

thods will always give with the same facility, the conditions

of the equilibrium of a system of bodies connected together in

any manner, and acted upon by any exterior forces whatever.

The proceedings are always similar, which ought to be re.

gardedasone of the principal advantages of this method.

The following question, and several others, are likewise

solved in the Mechanique Analytique of Lagrartge. To
find the equilibrium of a thread, all the points of which

are acted upon by any forces whatever, and which is sup.

posed perfectly flexible or inflexible, extensible or inexteo*

*ible
?

elastic or inelastic.

p
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nothing with respect to the axis of s*. The second and

the third of these equations indicate in a similar man-

* If the system be at liberty to turn in any direction about

a point taken for the origin of the co-ordinates, the instan.

taneous rotations about the three axes, may be considered

in the following manner
; which will give three equations of

rotation with respect to these axes, similar to those of

Laplace.
Let p represent the projection of a line drawn from the

origin of the co-ordinates to the body m, / that drawn with

respect to the body m'
9 &c., also

<p
the angle which the

line p
makes with the axis of x

9 <p'
that which f makes with

the same axis, &c. we shall have the following equations

orrzrp. cos.tp, f/zrp. sin. 9, a//. cos. p', #'/. sin.
<p', &c.

which by differentiation and substitution, if
p, p

;

, p" &c. be

supposed constant, will give

S<p', Sp'
7

,
&c. being each of them supposed equal top, as the

bodies m, m
1

,
ma

,
&c. are imagined to be invariably con.

nected.

These variations of #,#, #r

, y' 9
&c. are owing to the ele-

mentary rotation p about the axis ofz.

In a similar manner, if
\J/, 4/ , -^"^ &c. represent the an.

gles which the projections upon the plane yz of lines drawn

from the centre of the co-ordinates to the bodies m, m'
9
mnr

,

&c. respectively make with the axis 3^, the variations of#, ay

y, s', &c. arising from the elementary rotation 4/.about the

axis of a? may be obtained, which will give the following

equations,

fy= ~.^, *z=#.N', V= ~-W> ^=^'.^, &c.

Likewise if
<v, y, w", &c. represent the angles which the

projections upon the plane xz of lines drawn from the centre

of the co-ordinates to the bodies m,



LAPLACE'S MECHANICS. 107

ner, that the sum of the moments of the forces is no-

thing, either with respect to the axis of
?/ 9

or to the axis

with the axis 2, the variations of
a?, 2, x r

y s', &c., arising

from the elementary rotation w about the axis of ^, will

give

te= ff.Sw, tezs.So/, fc/zz o/.S*/, ^'-zzs'.S*;, &c .

If the three rotations take place at the same time, the whole

variations of the co-ordinates #, y, 2, #', y, 2', &c. will b

equal to the sums of the partial variations belonging to each

of these rotations, consequently we shall have the following

equations,

^ ;

s'.Sw -y.^, sy ic'.Jtp s'.^, ^'y.^ ^.So/.

If these values be substituted in the general formula of equi.

librium Z.S.cfciO, we shall obtain the terms belonging to

the rotations (>, $, and 5x}/ about the the three axes of 2,

^j and a?
; which ought to be separately equal to nothing>

when the system has liberty to turn in any direction about a

point placed at the origin of the co-ordinates. The equation

2.*$*.^? 0, by substitution, gives the following

in which

The co-efficients of the instantaneous rotations
\J/, &w, and

5<p, are the moments relative to the axes of these rotations,
and are respectively equal to nothing in the case of equilib-

rium, when the system has liberty to turn about the origia

of theco-ordinates.
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of x. By uniting these three conditions <o those in

If at any point of the system the co-ordinates #, y, and z

be respectively proportional to ^, w, and &>, we shall

have there

x3tac-v$$) x.$$zM, ^.5\I/zrj?.5w,

and consequently SarmO, ^i=0, and 02 0.

This point and all others which have the same property, \\ill

consequently be immoveable during the instant that the

system describes the three angles eNJ/, 5o>, and
<^>, by turning

at the same time about the three axes of a?, y and *. 1C

may be easily proved that all the points which have this

property ar* in a right line passing through the origin of the

co-ordinates. The co-sines of the angles A
5 /* ?

and v which

it makes with the axes of
a?, y and z, are

that by substitution will respectively become

-/ ^o>

an

^4,_j_^_j_;-
This right line is the instantaneous axis of the composed
rotation.

If we suppose S0:=v'(
r

& <

4'
a
-{-&*+&<?*) we shall have

.., ../A, ..,
which, by substitution in the general expressions of Jar

and S^j will give

^n:(^. cos.//,/. cos. y)S0,

These values being substituted in the expression

Js a
,
which is the square of the indefinitely short space passed
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which the sum of the forces parallel to these axis are

over by any point whatever, it will be changed into the

following

{(zcos.p <?/cos.v)
3
-}-( rcos ' v 2COS.A)

2
-f-(ycos.A o

as cos. 2
A-{~cos.

2
/A-fcos.

2
v 1.

It may readily be proved that orcos.A-f-^cos.^-f-scos.y 0, is

the equation to a plane passsing through the origin of the

co-ordinates, in a direction perpendicular to the right line

which makes the angles A, ;*, and
v, with the axes of #, i/ 9

and s, conse.quently the short space described by any point

of this plane will be <$Q\/ x z
-f-#*-f-2. As the axis of rota-

tion is perpendicular to this plane, S0 will represent the an.

gle of rotation about it composed of the three partial velo-

cities 4/,c^and p, about the three axes of the co-ordinates.

It therefore follows, that any instantaneous rotations 4/,

Sw, and $<p about three axes which cut each other at right

angles at the same point, may be composed into one Sfl-

about au axis passing through the same

point of intersection, and making with them the angles A,

p and 9. so that

Inversely, any rotation $9 about a given axis may be resolved

into three partial rotations, denoted by COS.A.^, cos. /.,#,

and cos.v.^Q, about three axes, which cut each other per-

pendicularly in a point of the given axis, and make with it

the angles A, /*, and . The above enable us in a very easy

manner to compose and to resolve the instantaneous move.

merits or velocities of rotation.

Let three other rectangular axes be taken which make with

the axis of rotation $4/ the angles A',*/
7
, and A"7

,
with the axis

of rotation ^ the angles y! jf*

77

,/*''
7

. and with the axis of rota-
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nothing with retpect to tach of them ; we shall have

tion Sp the angles v', ", and v
;//

; the rotation S>J, may be

resolved into three rotations cos.A'.$4/, cos.A".^, and cos.'

V'.cNj/ about these new axes, the rotation Sw may likewise

be resolved into three rotations cos. n'.'Sw, cos. /^
//.w

)
and

cos.j/'.Jw, and the rotation p into three rotations cos.v'Jp,

cos./.^, and cos.
' /;

.Sp about the same axes. By adding

together the rotations about the same axis, if we name S0
T

,

0", and W the complete rotations about the three new
axes we shall have

"'

cos.x".5vI/-J-cosV.Sw4- c

The rotations 5>J/, 5w> and
<p,

are by this means reduced to

three rotations S0', 50", and 50"' about three other rectan,

gular axes, which should consequently give the same rota,

tion $9 that results from the rotations
S>J/, 5a/, and ^, we

shall therefore have

S0 2;nS0'z+ S0"* -f ^"/
2 H 2

H- $*>* -f 5
?>
2

;

as this equation is identic, by substituting for^ 2
, $0//z

,

S0""2 their values given above, the following conditional

equations \\ill be obtained,

cos. 2
A'+cos.

2
*"-fcos.

2A'/
;

1,

COS.V

cos.V.cos.y'-f cos.x
/7.cos.vv 4-cos x'/'.cos.,/'

7

0,

COS.//

The three first are the respective co-efficients of S4/, eta,

and ^, which must each of them be equal to unity, and the

three last the respective co-efficients of 2&0'.<ty, 2$0M*i
and 25S//;

.^, and consequently should each of them vanish

that the equation may be identic.
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the six conditions of the equilibrium of a system of

bodies invariably connected together.

By means of these relations, the values of ^, Ja/, and tip

may be obtained, in terms of 80', S0", and W', by adding

together the values of $ff
, W, and W"

9 multiplied succes-

sively by cos, A', cos.?/7
, cos.x'", cos.///, cos.//,", &c., which

will give

If the angles which the composed rotation S0 makes with the

axes of the three partial rotations 80', $0", and S0;// are de-

noted by TT, TT',
and V7

,
we shall have

5fl'=cos.w'-.80, Sfc:cos.90, and S0 ;//

:z=cos.7r".S0,

and if in the before given values of $0', S0'
7

,
and S^7

',
there

are substituted for ^4/, w, and p, their values cos.A 9,

cos./x,.S9, and cos.v,9
;

the comparison of these different ex-

pressions of S9', S9"
,
andW will give, when divided by 9,

the following new conditional equations, which may be geo-

metrically demonstrated. Vide No. 29 Notes.

cos.7r
/
zi:cos.A < cos.^'-|-cos.^.cos./!*'-j-cos '''.cos.>',

COS.-Tr^ZZCOS.A.COS.^-f-COS./X.COS.^-j-COS.V.COS.y'
7

,

The above proof shews that the compositions and the resolu-

tions of the movements of rotation are analogous to those of

rectilinear motions. For, if upon the three axes of the ro-

tations of 4") <ta, and p, from their point of intersection,
three lines be taken respectively proportional to <ty, $u

9

and &p, and a rectangular parallelepiped be constructed

upon them, it is evident that the diagonal of this parallele-

piped will be the axis of the composed rotation 9, and will

be at the same time proportional to this rotation.

From this, and from the consideration that the rotations

about the same axis may be added to or subtracted from each



If the origin ofthe co-ordinates is fixed and attached

other, according as they are made in the same or in oppo.
site directions, it may bo concluded in general, that the

composition and the resolution of the movements of rotation

follow similar laws to those of the composition and tie reso-

lution of rectilinear motions, by substituting for the move.

ments of rotation, rectilinear motions along the directions of

the axes of rotation. Vide the Mechanique Analytique of

Lagrange, from which the greater part of the above has been

extracted.
"

Let SO', 59 /;

, SO'", &c. represent any indefinite number of

rotations about their respective axes, these may be com-

posed into one o9, about an instantaneous* axis of rotation :

for if from the point where all the axes cut each other, three

rectangular axes be taken, each of the rotations may be

resolved into three about these axes, and by adding or sub-

tracting, as the rotations are in the same or in contrary

directions, there will be three resulting rotations uhich

may be composed into one about an instantaneous axis of

rotation. Thus if ^'f*>' 9 andSp' represent the three partial

rotations about three rectangular co-ordinates, into which

the rotation S3' has been resolved, $W 9
ow v

, and p
v
,
those

about the same axis into which the rotation <^ /; has been re-

solved, &c. the following equation may be obtained,

-T- &c.)
2
-f (Sw'-r-Sft/'-f $

If in the formula Z/.84/+M.&ft/ + JY.<?, uhich contains the

terms due to the rotations J^, ow,^and ^?> in the general for.

mulaS.^S'.Ss'-f^.V-f&c., the values of H, ^, and

op found above be substituted, it will be changed, into the

following,

4 (L.cos.x" +M.cos.j*
//

+iyr.cos.v'
/

)*6*

+(L cos.*'"-fM cosV+ A'.cos.v'" )Jfi'

/;

.

The co-efficients of the elementary angles 0'
? JO", and
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invariably to the system, it will destroy the forces pa-

express the suras of the moments relative to the axes of the

rotations 9', 59'', and $0'". From the above it appears that

moments equal to L, M9
and N, relative to three rectan-

gular axes will give the moments

relative to three other rectangular axes, which respectively
'"make with these the angles/, ^ '

; A",

A geometrical demonstration of this theorem is given by
Euler in the seventh vol. of the Nova acta of the Academy
of Petersburg*

If the rotations $4,, $, and $p are supposed to be pro-

portional to JL, M, and N
9
and we make

the following equations will have place

Llf.cos.x, MH.cos.p,, A^ f,cos. y ,

and the three moments will be reduced to this simple form

//.COS.TT', //.COS.TT", //.cos.w'".

But TT', 7T
7

,
and w"' are the angles which the axes of the ro.

tationsSS', 59 /y

,
and ^ //; form with the axis of the composed

rotation $0, if therefore we make the axis of rotation $ff-

coincide with the axis of rotation 59, then Tr'nzO, and K" and
of" are each equal to a right angle, consequently the moment
about this axis will be H9 and those about the two other
axes perpendicular to it will be nothing. We may there.
fore conclude that moments respectively equal to L M
and A7

,
and relative to three rectangular axes #, y, and *

may bo composed into one, //, equal to \/(L
2
-{-M

2
-)-Nz

)
relative to an axis which makes with them the angles A, p.

and v
?
so that

L M N
COS.A=:~, cos. ^zz , cos.

=jf.
The sum of the moments relative to this axis is a maximum

Q
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rallel to the three axes ; and the conditions of the equi-

the tangent of the angle that it makes with the plane x i/
is

N
~*---

-, ami the tangent of the angle which the projec-

tion of the axis upon that plane makes with the axis of #, is

M
equal to

-^r-.
Ju

It is evident from the above that the composition of mo.
ments follows the same laws as that of rectilinear motions.

It may be immediately deduced from the composition of in.

stantaneous' rotations, by substituting the moments for the

rotations which they produce, in the same manner as forces?

can be substituted for right lined motions. Vide the Me.

chanique Analytique of Lagrange.

Those who are desirous of further information respecting

the composition and the resolution of moments, may consult

the writings of Euler, Prony, Poisson, &c. also a memoir

by Poinsot, in the 13th Cahier of the Journal de 1'Ecole

Polytechnique.
If the moments of the forces which act upon a system be

taken directly with respect to a point at the origin of the

co-ordinates, they will follow the same laws with respect to

different planes, as the projections of areas upon them, thus

for instance, %. (^ J
r. i

^ J may No. 3 be

posed into a single moment with respect to the origin of the

co-ordinates. This moment will evidently be the product

of the projection of the force S upon that plane multiplied

by the perpendicular drawn from the origin of the co-ordi-

nates to its direction, and may therefore be represented by
an are& equal to twice the area of a triangle, having the pro-

jection of a line representing in quantity and direction the

force S for its base, and the origin of the co-ordinates for

its summit.

It therefore follows, that the properties of moments with

rtspect to a fixed point are similar to those of plane surfaces.

com.
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librium of a system about this origin, will be reduced

I shall mention a few circumstances concerning them, re-

ferring the reader to No. 21, and the notes accompanying

it, which may be read independent of the other parts of the

work, from which the following properties may be deduced.

Suppose a number of areas represented by A^ A', A", &c.

ure in a plane passing through the origin of the co-ordinates,

let Z>, &', 6 7
,
&e. represent these areas projected upon three

rectangular planes passing through the origin of the co-or-

dinates, and c, c'j and c'
1

represent the projections of the

areas upon three other rectangular planes passing through

the same point, then by No. 21
2 + fr/a+ V'zc* -{- C

l*
-f C //2

,

consequently

When b' and b" vanish, the value of b is evidently a maxi-

mum, and the line which is perpendicular to it at the origin

of the co-ordinates may be found from the following equa-

tions, in which a, /3,
and y represent the respective angles

that it makes with the rectangular co-ordinates x, y, and

of the planes containing the areas
<?, c'j and c".

c"

-/(c+e/'

The absolute position of the plane of the greatest sum of th

projections of the areas is indeterminate in space, as the

projections are the same upon all the plauesthat are parallel

to each other.

The sum of the projections of the areas are the same for

very plane which is equally inclined to that of the greatest

projection, for if / denote the angle which any plan* having
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to the following, that the sum of the moments of the

the sum of the projections upon it represented by a makes

with that of the greatest projection, we shall have

a\/(^ -f c'
2

-|- c"
2
) . cos./,

therefore if/ be invariable a is also.

If D represent the sum of the areas upon any plane, E
,

'

5

and f
7' the angles which a perpendicular to it at the origin of

the co-ordinates makes with the axes s, y, and x respectively,
and A, By and C the sums of the projections of the areas

upon the three planes a^r, xz
9
and yz of the co-ordinates

;

then the following equation may be easily demonstrated.

If the areas A, A', A"^ Sec. are supposed to be respectively

double the triangles which have lines representing in direc-

tion and magnitude, the forces 5, #', S", &c. for their bases,

and the origin of the co-ordinates of their points of appli-

cation for their common vertex, then if N denote the mo-
ments of the forces projected upon the plane xy, it will re-

present also the sum of the projections of the areas A^ A',

A", &c. upon the same plane. In like manner, ifM andjL

represent the moments of the forces projected upon the

planes xz and yz, they will also represent the projections of

the areas A, A
r

, A", &c. upon these planes. It is therefore

evident that the three quantities!,, 3f, and JV, and analogous

quantities relative to the same system of forces, and to other

planes, will have the same properties as the sums of the pro-

jections upon those planes.

In the above the origin of the co-ordinates, or the centre

of moments, is supposed to be invariable, and the forces S
9

&', S 1

',
&c. to be resolved in directions parallel to there,

spective planes, and to be moved parallel to themselves to

these planes, and to act along them.

It therefore follows, that if the sums of the moments of

the forces S
9 ", SH

9
&c. resolved along the three planes of

the co-ordinates be known, the sum of the moments of the

same forces resolved along any other plane passing through
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forces which would make it turn about the three axes,

be nothing relative lo each of them *.

the centre of moments will be known from the following

equation

D .V.cos.s-f M.cos.s'+ L.cos.s",

in which D represents the sum sought, and s, s', and z
fl the

angles which a perpendicular to any plane from the centre of

the co-ordinates respeciively makes with the axes of the co.

ordinates ~, y^ and x,

The sum of the moments with respect to the plane of the

greatest sum of the moments is represented bj y'/f
2
-j- -U

2
-f N*~

and that of any plane making the ange /with it is equal to*

V'L* r M* + JVXcos./, if the angle / be a right angle then

cos.fciO, and the sum of the moments relative to this plane
vanishes.

If
, jS,

and y represent the angles which the perpendicular

to the plane of the greatest sum of the moments makes with

the axes of the co-ordinates #, j/, and 3, its position will be

determined by the following equations

L

M

s'~
If lines be taken upon the perpendiculars to each plane

from the centre of moments proportional to the sums of the

moments upon these planes, the line representing the great-

est sum will be the diagonal of a parallelepiped constructed

upon the lines representing the the three sums L, M and N.
The composition of moments, theiefore follows tiie sasne

laws as that of forces, the greatest sum and the perpendi-

cular to its plane having place instead of the resultant and

its direction.

* If the forces are all supposed parallel to each o(her and

their directions to make the angles #
; j3,

and y \uh the
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Let it be supposed that the bodies ra, m'
9 m", Sec. are

only acted upon by the force of gravity : as its action

co-ordinates #, y and z respectively; the equations (n) may
be changed into the following

cos.a.

cos. y. .?,$j/ cos.fi.'L.mSzj

.the third of which is a consequence of the two first; but a

by trigonometry cos. 2
a-f-cos.

2
<3+ cos.*y 1, we may deter.

mine from these equations the angles x
3 /3, and y. By sup.

posing, for abridgment,

m"S"y' -f &c. M,
Z.mSs=:mSz + m'S' z

1 +m"Sz f/+ &c.=N,
the following equations will readily be found,

L M

N
COS.y

-

The position of the bodies being given with respect to

the three axes, it is necessary in order that all motion of

rotation may be destroyed, that the system should be

placed relative to the direction of the forces, in such a

position as to cause the direction to make with the three

axes the angles determined above.

If the quantities .L, j!f, andW vanish, theangles a, /S, and

y will remain indeterminate, and the system will be in

equilibrio in any position. Therefore, if the sum of the

products of parallel forces by their distances from three planes

perpendicular to each other be nothing with respect to each

of these planes, the effect of the forces to turn the body
about the common point of intersection of these planes wUl

be nothing.
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is the .same upon all the bodies, arid as the directions of

gravity may be conceited to be the same in all the ex-

<ent of the system, we shall have

the three equations (n) will be satisfied, whatever may
be the direction of s, or of gravity, by means of the

three following

0=2.7w.r; 0=2,fny/ 0=2.mz. (o)

The origin of the co-ordinates being supposed fixed,

it will destroy parallel to the three axes, the forces

, re-

ipectively; by composing these three forces, we strati

have a resultant equal to S.S.my that is, equal to the

weight of the system.

This origin of the co-ordinates, about which we Here

suppose the system to be in equilibrio, is a very re-

markable point in it, on this account, that being sus-

tained, if the system is supposed to be only acted upon

by the force of gravity, it will remain in equilibrio,

whatever situation we may give it about this point ;

which is called the centre ofgravity o'f the system * Its

position is determined by the condition, that ifwemake

any plane whatever pass by this point, the sum of the

products of each body by its distance from the plane is

nothing ; for the distance is a linear function of the co-
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ordinatcs x^ y and s of the body* ; if it be therefore

multiplied by the mass of the body, the sum of these

products will be nothing in consequence of the equa-

tions (o).

In order to fix the position of the centre of gravity,

let X* Y, and j^bs its three co-ordinates relative to a
7 7

given point ; let #, y and z be the co-ordinates of m
relative to the same point, x

1

y'^ and z
1 those of m' y

and

so on ; the equations (o) will then give

Q=2.m.(z X) ;

but we have 2.mX=X.'2,.m 9
2.m being the entire

mass of the system ; we shall have therefore

X.m
*

We shall have in like manner

v 2,.m?/ S.wzz
~~

%.m
' ~

2.w

but as the co-ordinates X
9 Y, and ^determine only one

point, it is evident that the centre of gravity of a body
is only one point.

The three preceeding equations give

* Let Ax1

^By' -f CV zzO be the equation to a plane pass-

ing through the centre of gravity, which is supposed to be

the origin of the co-ordinates ;
then if x

9 ?/,
and z are th

co-ordinates of the body, its distance from that plane will

be - 7-^70 which is a linear function of the co..

ordinates #, y and z of the body.



fcfiKfctlow rniy !r; altered to this- form*

Ih:? finite intent

t)*} expresses the sum of all the products,, similar to

tfnt which is contained under the- cbaractemttc %?

fn order tcr render this evident it wfll be sufficient to

at? example, in which only three bodies m^mf,and wr^are

considered with respect to the co-ordinates of x. In this case

s equal to-'
.

'

..
- and

m+mf >\-m
>l

x)*}-

if both the namerator and

denominator of the first quantity are multiplied by 2.* or

mn
,

it will become

which, by subtracting the last quantity, gives

m zx*+Z

(Z.mx)*
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which we are able to form, from considering by two

and two all the bodies of the system. We shall thus

have the distance of the centre of gravity from any fixed

point whatever, by means of the distances of the bodies

of the system from the same fixed point, and their mu-

tual distances. By determining in this manner, the

distances of the centre of gravity from any three fixed

points whatever, we shall have its position in space,

which is a new method of determining it*.

We have extended the denomination of centre of

gravity to a point of any system whatever of bodies,

either having or not having weight, determined by the

three co-ordinates, X 9 Y, and J2Tt.

* As the last term of the second member of the equation

is independent of ihe given point, if the values of. the first

term he determined with respect to three given points not

in the same straight line taken either within or without the

system, we shall have the distances of its centre of gravity

from these points, and consequently its position with re-

spect to them. If the bodies were in the same plane two

points would have been sufficient, and if in the same line,

one. If the given points be taken in the bodies of the sys.

tern, the position of its centre of gravity will be given solely

by the masses and their respective distances. This method

of finding the centre of gravity is independent of the consi.

deration of three planes.

i It is evident from the principle of virtual velocities,

that the" centre of gravity of a system of bodies connected

together in any manner, is generally the highest or the low.

est possible when the system is in equilibrio.

Let m. m', m 11

,
&c. be the centres of gravity of a number

of bodies connected together, Mhose weights are denoted by
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16. It is easy to apply the preceding results to the

the powers 5, S7

, S", &c. acting respectively upon these cen.

tres, and let *, $',
$ 7,c. represent lines respectively drawn

from them to any horizontal plane. If the position of the

system he disturbed in an indefinitely small degree, we shall

have, in the case of equilibrium, the eqtiaiion of virtual

velocities S.$s + S'.M -f&.W-f&c. ;

the quantity Ss-\-S's' + S fl

!>"-\-&.c. is therefore either a max.

imum or a minimum. .If the sum of the weights S, S'
, S",

&c. be represmted by 6r, and .the distance of the centre of

gravity of the system from the horizontal plane by g-, we
shall have the following equation

S.s+S'.s'+S".t''+ &c.=G.g.
As the first member of this equation is either a maximum or

a minimum, the second is also, consequently the distance

of the centre of gravity from the horizontal plane is either a

maximum or a minimum when the system is in a state of

equilibrium.

WhcMi the distance of the centre of gravity from an hori-

zontal plane is a maximum, the equilibrium of the system of

heavy bodies is unstable, and if moved in an indefinitely

small degree would not return to its former state; on the

contrary, when the distance of the centre of gravity is a

minimum, the system if moved from the state of equilibrium,

would, after oscillating some time, return to it.

This may be exemplified in the case of a cylinder with an

elliptical base, which, wheu placed upon an horizontal plane

with the edge of contact in the line passing along an extre-

mity of the major axis, will have the distance of its centre

of gravity from the plane a maximum and its position unsta-

ble, and the contrary when placed with the edge of contact

in a line passing through an extremity of the minor axis.

The above are the only positions in which there can be an

equilibrium.
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equilibrium of a solid bcdy having
1

any figure what-

ever, foy supposing it formed of an indefinite number of

points invariably connected -with each other. Let dm
represent one of these points, or an indefinitely small

molecule of the body, and let ^r,#, and z be the rectan-

gular co-ordinates of this molecule; again, let P, Q,
and R be the forces by which it is actuated parallel to

the axes of .r, ^, and r ; the equations (m) and (n) of

the preceding No. will be changed into the following;

Q=fP.dm;

the integral sign/ is relative to the molecule e//w, and

ought to be extended to the whole mass of the solid*.

If the body could only turn about the origin of th

co-ordinates, the three last equations would be suffici-

ent for its equilibrium.

* It is easy to perceive that in the case of a solid body,
which may be supposed to be composed of an indefinitely

great number of points invariably connected together,

the quantity 2.mSl j
I becomes JP.dm^ for 51 r 1 is

equivalent to P, and f dm to S.m ;
in like manner 2,mS

~** becomes

( vT )& m * s equivalent to/P^.Jm, and 2.l r - l. m to

JQx.dm.
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Of the equilibrium of fluids.

17, 1 o have the laws of the equilibrium and of the

motion of each of the fluid molecules, it is necessary to

know their figure, which is impossible; but we have

no occasion to determine these laws except for the fluids

considered in a mass, and then the knowledge of the

forms of their molecules becomes useless. Whatever

may be these figures and the dispositions which result

in the integral molecules ; all the fluids taken in the

mass ought to offer the same phenomena in their equi-

librium, and in their motions, so that the observation of

these phenomena does not enable us to learn any thing

respecting the configuration of the fluid molecules.

These general phenomena are founded upou the per-

fect mobility of the molecules, which are thus able to

give way to the slightest effort. This mobility is the

characteristic property of fluids : it distinguishes them

from solid bodies, and serves to define them. From
hence it results, that for the equilibrium of a fluid

mast; each molecule ought to be in equilibrio, in con-
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sequence of the forces which solicit if, and the pressure

which it sustains from the surrounding molecules. Let

us clevelopc the equations which result from this pro-
perty.

In order to accomplish if, we will consider a system
of fluid molecules forming an indefinitely small rectan-

gular parallelepiped. Let #, y, and z be the three

recfangkir co-ordinates of the an:le of this parallele-

piped the nearest to the origin of the co-ordinates. Let

dx, dy, and dz be the three dimensions of this parallel-

epiped ; let p represent the mean of all the pressures

which the different points of the side dy, dz of the par-

allelepiped that is nearest the origin of the co-ordinates

experiences, and p
1 the same quantity relative to the

opposite side. The parallelepiped, in consequence of

the pressure which acts upon it, will be solicited parallel

to the axis of x by a force equal to (p p'^.dy.dz; p' p
is the differential ofp taken by making x alone to vary;

for although the pressure of p' acts in a different direc-

tion to that of p, nevertheless the pressure which a point

of the fluid experiences being the same in all directions;

p' p may be considered as the difference of two forces

indefinitely near and acting in the same direction ; we

shall therefore have p' p=-dr; and (p p')

dy. dz^= - .dr.

* In (fig. 14) let AX, AY, and A% represent the

axes of x,y, and z respectively, and ah a molecule of the

in the form of a rectangular parallelepiped, whose fa-
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Let P 9 Q 9
and R \w three accelerating forces which

also act upon the fluid molecule, parallel to the respec-

tive axes of ^5^5 and z : if the density of the parallel-

epiped is named p 9
its mass will be p.dx.dy.d~, and the

product of the force P by this mass, will b^ the en-

tire resulting force which moves it ; this mass will con-

sequently be solicited parallel to the axis of #, by the

force
J pP | -J- J

> .dx.dy.dz. It will in like man-

ner be solicited parallel to the axes ofy and s, by the

forces
$

PQ - (J) ^
.dr.dy.&,an.l ?R-(Jj) \

.dx.dy.dz ; we shall therefore have, in consequent
of the equation (b) of No. 3,

=
\

>p- (=)

{'-(')}>*>

ces bh, ag, and ad are respectively parallel to the planes

YAX, ZAX) and YAZ. Suppose that the co-ordinates of

the angular point b of the molecule are x, y, and ~, and

that ^zzf/or, bdmdy^ and ba~dz
; also, let mo represent

the quantity and direction of the mean of all the forces act-

ing upon the face dy, dz of the parallelogram, or (he force

p, and nq the mean of all the forces acting upon the oppo-
site face /g- of the molecule, or the force p'. ,

In this case p is supposed to be a function of the ro-ordi-

nates a?, ?/, and z
9 consequently for the opposite side of the

parallelepiped to that formed by dy and dz, as x becomes

x+ dx, the pressure p is changed into
jp-f(

-

j.dx
which -
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The second member of this equation ought to bean

exact variation like the first; which gives the following

equations of partial differentials,

(d.pP\_(d.PQ\ f (d.pP\fd.P R
\~d~J \d -~

dz

from which we may obtain

for that side must necessarily act in an oppbsite direction te

. It therefore follows that I ]dx* the difference of

\dxj
the two pressures, when multiplied by dy and

f/^, gives the

whole force arising from pressure that acts upon the paral.

lelepiped in the direction of the co-ordinates, which should

be taken negatively, as it tends to diminish them, and, in

the case of equilibrium, must be equal to the moving force

fP.dx.dy.dz.tbxt acts in an opposite direction.
* The equation

by transposition, becomes

s

j Page 45, therefore Jp=r
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+ The proof that if
f[P.$x+Q.ty+R3z} is an exact

differential, the equations

fP\ fd.fQ\ /d. PP\

have place, may be given as follows. Suppose u

then dupdx -\-qdy is an exact differential, if/? I I

and ginl )
: by differentiating^ alone in the first, and

^* c/ -S

x alone in the second of the two last equations, we shall have

diiJ~\dxdijJ \dxjt \dydafj'

dacdy

In like matiner, if u^nf(x^y^z)^ by differentiation du

$dx+qdy+rdZ) in which equation p~(
j, <7=z| |

and rma I ;
let z be supposed constant, then du~pdx

-f^rf/y, which gives! Jrzii
1 ; also if y and x are sup.

posed alternately constant, the resulting equations will re.

spectively give (J)=(J)and(J)=(|)-
I" (he

above pP may be substituted forp, pQ f r
(7?

and
p
/t for r.

By differentiating the equations
dy J V dx

multiplying the first by R, the second by Q, and the third

by P : (hey will give by adding together, asp disappears, the

s
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This equation expresses the relation which should

exist amongst the forces P, Q and 7?, that the equili-

brium may be possible*.

following equation 0=P -

* Suppose an incompressible fluid not acted upon by the

force of gravity to be contained in a vessel that has a number

of cylinders attached to the sides of
it, to which a number of

inoveable pistons are adapted. Let the areas or bases of

the cylinders or pistons be represented by A, A1

, A", &c.

also suppose $, S'
9
S 11

, &c. to denote the powers applied

to the pistons having the bases A, A', A", &c. respectively,

and that these powers, which act upon each other by the

intervention of the fluid, are in. equilibrio. Let p repre-

sent, in this case, the pressure upon the area denoted by

unity of the surface of the vessel or the base of the pistons,

then pA, pA' 9 pA f/

9
&c. will denote the respective pressures

of the fluid upon the bases of the pistons, but these pressures

are equal to the forces which act upon the pistons, therefore

S~pA 9 S~pAf

, S~pA", &c. Let a part of the pistons

be pushed downwards, then it is evident that the other part

of the pistons must be elevated by an equal quantity of water

to that depressed, so that if $s
9 Ss', 3s'1

9 &c. represent the

depressions or the elevations of the respective pistons whose

bases are A, A'
9
A"

9
&c. we shall have the equation

regarding the spaces through which the pistons were depressed

as positive, and the spaces through which they were elevated

as negative. Let this equation be multiplied by p 9
then

or by substitution

S.$s

which is the equation of virtual velocities.
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If the fluid be free at its surface, or in certain parts

Suppose that T, 7", T77

,
&c. represent the different pow-

ers which act upon a molecule whose co-ordinates are #, y,

and s these powers being directed to certain fixed centres,

the distance of which from the molecule solicited aie re.

spectively /, t', t"
,
&c.

Let the co-ordinates of these fixed centres referred to the

origin of the co-ordinates x, y, and s, and respectively

parallel to them be
, , c; a', &', c', &c. we shall then have

T//

&c. &c .

As the equilibrium is possible, when the fluid molecules are

solicited by forces directed towards fixed centres, which are

functions of the distances of the points of application from
these centres ; we may substitute the above values of P, Q,
and R, in the equation

7=(P<

which then becomes

_.{ (x

-f&c.
and is equivalent to
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of its surface, the value of p will be nothing in those

parts ; \ve shall therefore have $p=0*, provided that

we subject the variations ^r, ^j/, and, $z to appertain

The sum L (ty) taken throughout the whole extent of any

indefinitely narrow canal, which either re-enters into

itself, or is terminated at two points of the exterior surface

of the fluid mass, is always nothing ;
on the supposition that

the resistance of the sides, if the fluid be contained in a vessel

is regarded, and that the canal is imagined in this case to

have one of its extremities terminated at a point of its side.

It may therefore be concluded, that for all the cases of the

equilibrium of a fluid, the following equation has place

throughout the whole extent of the mass,

In this equation the products of pT, p7", &c. are propor-
tional to the moving forces with which each power acts upon
the molecule. Let 5, 5"'. S", &c. represent the moving
forces which are the resultants of the powers which re.

spectively act upon each fluid molecule, and s
9

s f
. s !l

9
&c.

the lines drawn respectively in the directions of the forces

S
9

S' 9 S", &c. from each fluid molecule; then the above

equation is equivalent to the following

This equation is similar to those deduced from the principal

of virtual velocities for the equilibrium of a point or a

system.
* This will be the case not only when jpzzO, hot likewise

when p is a constant quantity, which also gives fy0. For

instance when the atmosphere presses equally upon the sur-

face of the fluid.
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to this surface : by fulfilling these conditions we shall

consequently have

*
Suppose for example, a fluid mass to be acted upon by

a force S tending to the centre of the co-ordinates, and let

one of its molecules be placed at the distance r from that

centre, having #, y^ and s, for its rectangular co-ordinates,

then rzzy/ a;2^.^2_|_2"2 : the force S resolved parallel to these

Sx Si/ Sz
co-ordinates gives 'and for the forces m their re-

r r r

spective directions. These forces, taken negatively as they

tend to diminish the co-ordinates, should be substitated for

their respective values P, Q, and .R, in tho preceding

equations. When they are substituted in the equation

P.^x+Q.ty+R.fc they will give, by the suppression of the

S
common factor -- ,'

which is an exact differential, therefore the equilibrium is

possible. This equation when integrated becomes #2
-{-ty

2+
S 2zzc 2

,
which is the equation to a sphere, consequently, the

fluid will assume a spherical form. If r is very great the

surface of the fluid may be regarded as a plane, as is the

case with the surface of a fluid in equilibrio in a vessel when

only acted upon by the force of gravity.
Let the force S be supposed to vary as the nth power of

its distance from the centre of the co-ordinates, and to be

represented by Ar
y also, let/? represent the pressure upon

an area of the surface denoted by unity, then the equation

P=f{p-*x+Q'ty+R"te} will, by a proper substitution,
be changed into the following

but *to-fjf}y-ftiT$f9
therefore
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Jf tezd) be the differential equation of the surface, we
*hall have P.$x-\-Q.ty-\-R.Sz=X.$tf, x being a func-

tion of#,y, and z; from which it follows, by No. 3, that

TMs is the value of the pressure referred to unity of (he sur-

face which acts upon the molecule that has #, y 9
and z for its

co-ordinates.

The equation of equilibrium may he used to find the form

which a fluid retains when it has an uniform rotatory motion

round a fixed axis, by adding the centrifugarforce to the

given accelerating forces which act upon the molecules.

Let the axis of z be that of rotation, n the angular velocity

common to all the points of the fluid mass, and r \/'# -\-g*

the distance of any point of it from the.axis of rotation
;

then, as the centrifugal force of the point is equal to the

square of its velocity divided by its distance from the axis of

9
it will be represented by rc

2
;*,

which when multiplied by
the variation of its direction gives n*r$i n 2

.r.$r--n2yty
If this value be added to the formula P.&e+Q%-f U.5s, it

will not prevent it from being an exact differential, for the

centrifugal force of a point may be considered as a force of

repulsion, the intensity of which is a function of the distance

of the point from the axis of rotation : we shall therefore

have the equation

for the differential equation of the surface of the laminae and

of the free surface of the fluid. That the Telocity n may
be uniform it is requisite that the forces P, Q, and R should

arise from the mutual attraction of the molecules, or from

attractions in the directions of lines joining the molecules

and the axis of rotation, or from forces acting towards

points which have the same motion as the fluid mass.
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(he resultant of the forces P, Q, and J?, ought to be

perpendicular to those parts of the surface where the

fluid is free.

Let us suppose that the variation P.&r-j- Q.ty-\-R.$s
is exact; which circumstance has place by No. 2, when

the forces P, <?, and R are the results of attractive

forces.

Naming this variation op, we shall have $p=p.ty ;

p therefore should be a function of p and of p, and as

by integrating this differential equation, we have p a

function of p ; we shall havep a function of p. The

By way of example, let us find the form of the surface of

a quantity of water contained in a cylindrical vessel open at

the top, having a rotatory motion round its axis which is

vertical. As water is an incompressible and homogeneous

fluid, the above equation will be sufficient, let therefore the

origin of the co-ordinates be at the centre of the base of the

vessel having z for the vertical axis of rotation, and let g*

represent the force of gravity, then we shall have PzzO,
QzzQ and Jlur g*, consequently the equation of the surface

of the^fluid becomes by substitution

which by integration gives

In this case it is evident from the equation that the upper

part of the fluid will form the surface of a paraboloid of

which the solid content is given, as it will be equal ti> one

half that of the water contained in the vessel. The equatioa

2o-
of the generating parabola is y*~~;z as appears from

making # to vanish.
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pressure p is therefore the same for all the molecules of

which the density is the s:ime ; therefore %p is nothing
relative to the surfaces of the laminae of the fluid mass

in which the density is constant ; and we shall have by
relation to these surfaces

It therefore follows, that the resultant of the forces

which act upon each fluid molecule, is in the slate of

equilibrium perpendicular to the surfaces of these

lamina ; which have been named on that account

(couches de niveau,) laminae of level. This condition

is always fulfilled if the fluid is homogeneous and in-

compressible ; because in this case the laminae to which

this resultant is perpendicular are all of the same

density*.

* In the case of the equilibrium of an elastic fluid, the

pressure is found by experiment to vary as the density,

consequently p may be supposed equal to f . If/>zzff then

f ,
let this value of ^ be substituted in the equation dpzz

and it will give adfpzzjp^p, consequently d.\og.p-.d<p.

If the fluid be homogeneal and of the same temperature, a

is constant and the equation possible. By integration we

9
ai

shall have \og.p-+lov.c,orpc,e 5
c being a constant

quantity, and e the base of the system of logarithms which

has unity for its modulus. As this value of p and conse-

quently that of f -are functions of the sole variable <p,
the
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For the equilibrium of an homogeneous fluid mass,

the exterior surface of which is free, and covers a solid

mass fixed and of any figure whatever; it is therefore

pressure and the density will be the same for all the extent

of each lamina of level as in the case of heterogeneal fluids
;

the densities of the different laminae are determined by the

equation

9

t=
P-=^.
a a

If in an homogeneal fluid the temperature be not the same

throughout the mass, the quantity a will not be con-

stant
;

let t denote the temperature, then a will be a function

of t, but a, if variable, must be a function of
<p, conse.

quently t must be a function of
<p ;

it is therefore necessary

in the case of equilibrium that the temperature be uniform

throughout each lamina of level, as well as the pressure and

the density, which are likewise functions of
<p.

The tern.

perature may vary according to any law in passing from one

lamina to another, but this law being given the laws of the

pressure and the density will be determined by the following

aquations,

being a constant quantity.

In the case of the equilibrium of the atmospheric air, let

it be supposed that a small vertical cylindrical column of it

is continued from the surface of the earth to an
indefinite

height, which must be supposed in equilibrio independent
of the surrounding air that may be conceived to become im-

moveable. The force of gravity can without sensible error

be supposed to act in the direction of the cylinder along its
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necessary and it is sufficient, first, that the differential

P.r+<?.^+^?.^ be exact; secondly, that the re-

sultant of the forces at the exterior surface be directed

perpendicularly to this surface.

whole extent, and in the case of equilibrium, the density,
the pressure, and the temperature may be considered as in.

variable throughout the whole mass of an indefinitely thin

horizontal lamina. Let z represent the distance of any
lamina whateTer from the surface of the earth, ^ its density,
r the radius of the earth, g the force of gravity at its surface,

g'r-^- the force of gravity at that altitude, and p its

elastic force, , g
1 and p being functions of s, dz the breadth

of the lamina and a the area of its base. Then if p be the

pressure upon a portion of the surface represented by unity,

that upon the higher part of the lamina will be Ap and that

upon the lower A(p-\-dp)^ but the excess Adp of the first

pressure above the second is equal to the weight of the lamina

or Aggdz, therefore $p~ &?'&& This equation may be

obtained by proper substitution from the general equation

in which P and Q will vanish and R be equal to g'fe.



& 4PLA CX'S MECHANICS. 139

CHAP. V.

General principles of motion of a system of bodies*

IS. E have in No. 7 reduced the laws of the motion

of a point to those of its equilibrium, by resolving the

instantaneous motion into two others, of which one

remains, and the other is destroyed by the forces which

solicit the point : the equilibrium between these forces

and the motion lost by the body, has given us the dif-

ferential equations of its motion. We now proceed to

make u^e of the same method to determine the motion

of a system of bodies m9
m'

9
m fl

9 &c. Let therefore

mP, mQ, and mR, be the forces which solicit m paral-

lel to the axes of its respective rectangular co-ordinates

#, y, and zy let m'P\ m'Q'9
and m'R' be the forces

which solicit mf

parallel to the same axes, and in a

similar manner with the rest ; and let the time be repre-

sented by t. The partial forces W'-ri m
'~j^>

anc*

m.~ of the body m at any instant whatever will become
dt
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in the followin

dx . .dx 7 dx . nm.- \-m.d--
-- m.d. -\-mP.dt ;

di/ ,
, dy , du .

'

dz . , dz , dz
m.+m.d. m.d.

and as the sole forces

dx . ,dx dii . du dz . , d%

remain ; the forces

-m.d.^j+mP.dt; -m.d.^f+mQ.dt;

m.d.- \-mR.dt ;

are destroyed*.

* The forces which are destroyed during the motion of the

system at any instant) will evidently form an equation of

equilibrium for it at that instant. If in this equation of

equilibrium the bodies undergo an indefinitely small change

in their position, the moments of the forces according to the

principle of virtual velocities will be equal to nothing; the

the forces destroyed are mP, mQ, mR, m'P', &c. m.

d\y d*z
fm. -* m. , m .
-

, c. whose moments
dt* dt-' dt*'

are mP.fa, -mQ.ty, mlOz, &c. ~w.-.^, ~~m
'jty>

dzz
w , ~. &c . the general formula of equilibrium is there-

fore, when multiplied by 1, as follows
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By distinguishing in these two expressions, (he let-

ters ro, x, y, s, P, Q, aid R successively by one, two,

Sec. marks, we shall have the forces destroyed in the

bodies m 1

, m", &c. This being premised ;
if we mul-

tiply these forces respectively by the variations ^ Sy,

52, So:', &c. of their directions; the principle of virtual

velocities explained in No. 14, will give, by supposing

dt constant, the following equation ;

&c*.

In the equation of equilibrium of the forces destroyed, in

order that they may be equal to nothing, either the forces

d*x d*y
rc.-r1-, &c. or the forces #zP, mQ, &c.

taken negatively, although in the motion of the system they

may tend to increase the co-ordinates.

* The expression d*x.&>rk&0.foj-<pzjz is independent
of the position of the axes of the co-ordinates x, t/ y and z

as may be proved in the following manner.

Let the rectangular co-ordinates
#,, yn and

z,
be substi-

tuted for those above mentioned, having the same origin
but referred to other axes

;
then it may easily be' demon,

strated that
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We can extract from this equation by means of the

particular conditions of the system, as many of the

the co-efficients a, /$, y, a'. &c. being constant quantities,

and only dependent upon the respective positions of the two

systems of co-ordinates. The co-ordinates 47, y 9
and z are

relative to the same points as the co-ordinates #
/5 yn and z

l9

consequently z z+y 2
-\-z

z
~x,

z
-}-y l--\-z l

z
; this expression

gives the six following conditional equations,

0+a'jS' -f '/#'=0, y
from which, it appears, that three of the nine co-efficients

are indeterminate quantities.

If the expressions of
a?, y, and z are twice differentiated.,

they will become

&z=La"d*x, -f &"d*y, -f 7^2,,
the following variations may likewise be obtained

S^a^-f/-fy^

By substituting these values and regarding the equations of

condition between a, ft, 7) a
'

?
& c . we shall find that

d**$x-)-d*yty 4- d^zdixfix;, -f c?
2
^ /^ /

-f d*zfiz,*

If the same substitutions are made in the expressions for the

right lined, distances between the different bodies of the

system. represented by/, /, //, &c. the quantities a, /3, y,

*', &c. will equally disappear, and the transformed ex-

pressions will retain the same form. Thus 3
9 y, and s being

tlie. co-ordinates of the body ro, and x 1

, y
1

,
and s

; those of

the body ?', their distance/ will be equal

If the axes are changed, the first co.

ordinates will become x
t yt

and z
l9

and the second a?
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variations as we have conditions ; by afterwards equal-

ling separately to nothing the remaining co-efficients of

and 2 also

By substitution and haying regard to the before mentioned

equations of condition, we shall have /zzy//^
/_x.*-L.

(#/ #,J
a
-Ks/ Z;)* ; a similar proof may be given for the

quantities//, /", &c.

It follows from the above, that if the system is only acted

by forces which are proportional to some functions of the

distances/, /'. / /y

,
&c. between the bodies

; and the equa.

tions of condition of the system solely depend upon the

mutual situation of the bodies or the lines/, /', / /7

,
&c.

the general formula of dynamic will be the same for the

transformed co-ordinates # yfl
and z

t ,
as for the original

ones #, y, and z. If, therefore, the different values of #,

y, and z for each body are found with respect to the time

by integration of the different equations [deduced from this

formula, and those values are taken a?
/s y^ and z

{9
we shall

have these more general values for x^ y, and z.

in which the nine co- efficients a , 0. 7) a
'

,
&c. contain three

indeterminate quantities, as there are only six conditional

equations amongst them.

If the values of x
fl y^ and z

t
contain all the constant quan-

tities necessary to complete the different integrals ;
the three

indeterminate quantities will be mixed with some of the

other six constant quantities, they will also make up those that



the variations, we shall have all (he necessary equation^

for determining the motions of the different bodies of

the system*.

19. The equation (P) contains nnny general prin-

ciples of motion, which we shall proceed to develope.

The variations &r, ty, $z
9 &e', &c. will be evidently

are wanting, without which the solution would be incom-

plete. Thus hy means of these three new constant quantities

which may be introduced after the calculation, it will be pos-

sible to suppose the same number of the other constant

quantities equal to nothing, or to some determinate quan-

tities; which will often much facilitate and simplify the calcu-

lation. Vide the Mechanique Analytique of Lagrange.
* Al though the effects of the forces of impulsion or percus-

sion may be calculated in the same manner as those of

accelerating forces, yet when the whole impressed velocity

only is required, its successive increments can be neglected,

and the forces of impulsion considered in what follows as

equivalent to the impressed motions.

Let therefore S
9 ', S"

9
&c. represent the forces of im-

pulsion applied to any body m of the system in the directions

of the lines *, *', s", &c. and suppose that the velocity given

to this body may be resolved into three velocities, represented

by x\ y 9
and z in the direction of the co-ordinates x, yy

and z
9
we shall have by changing the accelerating forces

^, ^
and - into the velocities x

9 y 9
and z

9
th

general equafion

S.mfkr+^+s"**; Z(S.*s+S'.*8'+S
a
.'*s

l

>) + &c. 0.

This equation will give as many particular ones, as we shall

have independent variations, after they have been reduced

to the smallest number possible by means of the conditional

equations belonging to the system.
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subjected to all the conditions of tbe connection of the

parts of the system, if they are supposed equal to the

differentials dx, dy, dz, dx', &c*. This supposition is

If the system is continuous and of an invariable figure

as a solid body, or variable as flexible bodies and fluids ; by

denoting its whole mass by m and any one of its molecules

by dm, it may be considered as an assemblage or system of

an indefinitely great number of molecules ;
each represented

by dm and acted upon by the accelerating forces &. &', S",

&c. ; and it will be sufficient in the general equation to sub.

stitute dm for m, and for the sign 2, S or the sign of inte-

gration relative to the whole extent of the body, that is, to

the instantaneous position of all its molecules, but indepen-

dent of the successive positions of each molecule. For a

fuller detail respecting solid bodies, I refer the reader to

the seventh chapter of this work.
* It is necessary in this case that the equations of condi-

tion should not contain the time
,
which sometimes happens,

as for instance, if one of the bodies be forced to move upon

a surface which is itself moving according to some given law,

there will then be an equation of condition of the co-

ordinates and the time /, for the equation of the surface at

any instant, which may be represented as follow s,

In the equation of equilibrium of a system formed by those

forces which are supposed equal to nothing when it is in

motion, it is necessary, in order that the indefinitely small

change in its position according to the principle of virtual

velocities may be proper, that the co-ordinates of th
f
e bodies

in the new position of the system when substituted should

satisfy that equation. These co-ordinates are x-}-$x 9 ^"4"^>
and s-J-Ss for the body m, s'+So/', #'+&/, and 2/-fcb' for

the body m'. &c. which should satisfy the above conditional
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therefore permitted, consequently the equation (P)
will give by integration

dz); (Q)
c being a constant quantity introduced by the integra-

tion.

Ifthe forces P, Q, and R are the results of attracting
forces directed towards fixed points, and of attracting

equation when respectively substituted for #, # 3 z, x'
9 y' 9

&c. ; the differential of the function F,

will then be equal to nothing, t being regarded as constant

and the variations of the co-ordinates x, y^ z; #', y
1

, s'; &c.

denoted by the characteristic $. But as the co-ordinates of

the bodies are functions of the time, the complete differentia.

tion of jP with respect to /, x
9 #, 2, #', &c. being regarded

as functions of t, will be equal to nothing. We shall there-

fore have the following equation,

>+a>+(SMS)
, 0.

T.dt being the differential of F taken with respect to the

time which is contained explicitly in this function. If T.dt

be equal to nothing it is evident that the former equation

will coincide with this, by taking ^zzc/^, ^zzti^, &c.

From the above it appears, that when the time is not ex-

plicitly contained in any of the equations of condition,

the virtual velocities of the moving bodies along the axes of

their co-ordinates may be supposed equal to the differentials

of these co-ordinates, or the spaces passed over by their

projections upon these axes during the time dt.
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forces of the bodies one towards another, the function

2.fm.(P*dx-}-Q.dy-\-R.dx} is an exact integral. In

fact, the parts of this function relative to attracting

forcei directed towards fixed points, are by No. 8,

exact integrals. This is equally true with respect to

the parts which depend upon the mufual attractions of

the bodies of the system ; for if the distance between

m and m' is called /, and the attraction of m' for m,

m'F, the part of m.(P.dx+Q.dy-{-R.dz) relative to

the attraction of m 1 for m, will be, by the above cited

No. equal to mm'.Fdf, the differential df being taken

by only making the co-ordinates x, y, and 2 to vary*.

* As m'F is the accelerating force of m arising from the

attraction of m 1 which acts along the line /, its components
x<_x

in the directions of the axes of
a?, #, and x are m'F.

,

m'pt ^HM^ and
w'JF.^^,

we shall therefore have the
J J

following equation with respect to this force alone

In a similar manner, P', Q', and R1 denote the components
of the accelerating forces which act upon m' parallel to the

same axes, we shall have relative to the force' mF the

equation
mF

If, after having multiplied the first of these equations by m
and the second by m', we add them together, they will in.

troduce into the expression ?<m(Pdx+Qdy+Rdz) the term
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But the re-action being equal and contrary to the

action, the part of m'.(P.'dx'-\-Q
f

.dy'-}-R
t

.dz') rela-

tive to the attraction of m torn', is equal to mm'.Fdf,
if the co-ordinates .r', y, and %' alone vary in f\ the

part of the function ^.m(Pdx-\-Qd^Rdz) relative to

the reciprocal attraction of m and of m'
9

is therefore

mm'.Fdf; the whole being supposed to vary in/. This

quantity is an exact differential when / is a function of

.F, or when the attraction varies as a function of the

distance, which we shall always suppose; the function

Z.m.(Pdj;-\-Qdy-\-Rdz) is therefore an exact differ,

ential, whenever the forces which act upon the bodies

of the system, are the result of their mutual attraction

or of attracting forces directed towards certain fixed

points. Let d$ represent this differential and o the

velocity ofm
9

uf that of m'9 Sec. ; we shall then have

2.mva=c+2<p. (R)
This equation is analogous to the equation (g) of No. 8;

it is the analytical traduction of the principle of the

preservation of the living forces. The product of the

mass of a body by the square of its velocity, is called

+ (z'-z)(dz'-dz)}.
If the equation f2

=(x-x')*+ (yy')*+(z<-z')* be

completely differentiated it will give

fdf=(x x')(dx-dx
l

)+ (ytf)(dydj/) -f (z z')

(dz-dz
1

) ;

the preceding term by substitution therefore becomes

mm'Fdf.
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its living force. The principle upon which we are treat*

ing consists in this, that the sum of the living forces,

or the whole living force of the system is constant, if

the system be not solicited by any forces ; and if the

bodies be solicited by any forces whatever, the sum of

the increments of the whole living force is the same,

whatever may be the curves described by each of the

bodies, provided, that their points of departure and

arrival are the same.

This principle has place only in the cases in which

the motions of the bodies change by insensible grada-

tions. If these motions experience sudden changes, the

living force is diminished by a quantity which we shall

determine in the following manner, The analysis

which has conducted us to the equation (P) of the

preceding number, gives in this case instead of that

equation, the following*,

* The equation i.. -P.^+-Q^
(d*z

\ > fdP-s:

-fat
R

)
^ C of No. 19 is equivalent to Z.m.l -r-j

or

.~, .

ut (It

which equation if the differences A.~, A., and A.

substituted for the differen

changed into the following,

substituted for the differentials d. , rf.^t and d ft
dC dt

y
'dt*
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A.~, A.^,
and A,^ being the differentials of^,

~

and
^r

from one instant to another ; which differen-

tials become finite when the motions of the bodies

receive finite alterations in an instant. We may sup-

pose in this equation

*#=(?#+A. <te; Sysrzdy+A.^ ; $*=cfe+A.<fe ;

because the values of dx. dy, and dz are changed in the

following instant into r-}-A.<r, */y-j-A.^, and dz-\-

A.c?2, these values of dx
9 dy^ and ?s satisfy the

conditions of the connection of the parts of the system ;

we shall therefore have

This equation should be integrated as an equation of

finite differences relative to the time f, of which the

variations are indefinitely small, as well as the varia-

tions of X) i/, z, x') &c. Let us denote by 2X
the finite

integrals resulting from this integration, to distinguish

them from the preceding finite integrals, relative to all

the bodies of the system. The integral of mP.(dx-\-

A.drJ, is evidently the same as fmP.dx; we shall

therefore have*

* The integral of mP.(dx-\-&.dx) is fm.P.dx, for

=$ff, but/w.P.^e is equivalent tofm.P.dx, therefor*
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constant =2,,

if v, ?/, i/
7

, &c. denote the velocities of m, w', wff

, &c.

we shall have

The quantity contained under the sign 2, being neces.

sarily positive, we may perceive that the living force

of the system is diminished by the mutual action of the

bodies, whenever during the motion some of the varia-

tions
A.-^, A'-jp

&c. are finite. The preceding

equation moreover offers a simple means for determining
this diminution.

At each sudden variation in the motion of the system,

it is possible to suppose the velocity ofm resolved into

.(cfjr4
p

AcT#) is equivalent iofmP.dx. In this equation
dx dx 1 dx*

the integral of .A. -r- is supposed to be-r.-r-r.
at at 2 dt z

Those who wish to obtain information respecting finite

differences and their integrals, may find it in the two w,orks

of S. F. Lacroix, upon the Calcul Differentiel and Calcul

Integral, in the Traite De Calcul Differentiel et Calcul

Integral, par J. A. J. Cousin, and in the 19th Legon of

the Legons sur Le Calcul Des Fonctions
3 par J. L.

Lagrange, &c. &e.
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two others, one ofwhich v remains during the following

instant; the other of which V is destroyed by the action

of the other bodies; but the velocity of m being

\/(dx*+ dy*+ dz*)
---~- before this resolution, and changing

afterwards into /( (d*+*.dx)*+(dy+*.4y)*
dt

A.ffc)
2
}-- ' it is easy to perceive that we have

the preceding equation ought therefore to be put into

this form

=: const. 'Z.

* The equation 2. wi? 2
:n:c-f;2<p, when differentiated with

dv dq> dv
, ,

dv'

respect to *, becomes
2.mu.-r-i=^,

or mu. -fm'v'.

+^.^.'+&c.^.|+ S'.|'
4 ST.

g'+ftc.
which equa.

lion has place for a system of bodies connected with each

other in any manner whatever, which reciprocally attract or

repel each other, or are attracted towards or repelled from

fixed centres by any forces S
9
Sf

, Sf/

$ &c. ; naming the mu-

toai distances of the bodies which attract or repel each other,

or tbeir distances from fixed centres of attraction or repulsion

*, /, s", &c.; taking the quantities S, S !

, 5"'', &c. which

represent the forces, positively or negatively, according as

tliesc forces are repulsive or attractive ; as the first tend to

increase and the second to decrease the distances s, s'
9

6 /y

,

&c. This principle also has place in the movement of in-

elastic fluids so long as they form a coatinuous mass and

there is no impact amongst their molecules.
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. If in the equation (P) of No. IS, we suppose

If the forces
, 5', 5", &c. are respectively functions of

the distances s
9

s'
9 s", &c. along which they act, which may

always be supposed when these forces are independent, of

each other
;
or in general if the quantities S, *$", Sf/

9 &c.

are such functions of*, s', s"
9
&c. that the quantity .--{-

gjj fiJi

$>
"
+$.- +&c. is the differential of a function of s,ut dt

*',
s"

9
&c. which can be denoted by F(s, s',

s"
9
&c.) 9

the

integral of the above equation will be

iz>*+roV*+ifiVa
+&c.=c+2F(>, s

r

, *'/, &c.;,
c being a constant quantity. In this case the forces S

9
Sf

9

Sf/

,
&c. which act along the lines s, /, s r/

9
&c. will be re.

^ d.Fc*, *', *v
, &c.; d.jFx*, *', ", &c .;

presented by- -, ^.
>&c ,

respectively.

Let a, a', a'7
,
&c. be the respective values of s, s

r

, s", &c.

and F, V 9 V", &c. the respective velocities of m
9
m'

9
m ff

9

&c. at a given instant; the preceding equation referred to

this same instant will give

m^+ m/r/2

4-m^^4-&c.z=c-h2Ffa ? ', a", &cJ ;

consequently c^nmV z+ m'V' z+m"V f'2+&c.-~%F(a, a', a",

&cj, therefore, by substitution, we have the following

general equation,
<l
v'"' + &c.=imV2+m t V'*+ m f/F f/2+ &c. +

7

, &c.J 2F(, ', a", &cJ.
This is the general equation of the preservation pf the

living forces, from which it is evident, that the whole living

force of the system depends upon the active forces, such as

the forces of attraction or repulsion, or springs, &c. ;
and

upon the position of the bodies relative to the centre of
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z+
&c.

these forces ; therefore if at two instants the bodies are at

the same distances from these centres, the sum of their

living forces will be the same.

If the bodies should strike each other, or meet with ob.
stacles which cause a sudden alteration in their motions, the

above formula may be applied to the bodies during these

alterations, however short they may be ; thus denoting by
F, V 9

F /x

, &c. their velocities at the commencement of the

sudden change, and by v, v'
9
v f/

9 &c. their velocities at its

termination, also by a, a', a"
9

e. the values of the distances

5, *', s"9 &c. at the beginning, and by A, A'
9
A"

9 &c. their

values at the end of the same action, the following equation
will have place,

m' V*+mV"*+&c.mv* m'v'* m"v'^ &c. =
rt, a', a", &c.) 2F(A 9 A', A1

, Sec.). Which shews

that the difference of the living forces at the commencement,
and at the end of the action will be 2-Ffa, a', a"9

&cJ -

%F(A9
A

,
A(f

9 ike.). This expression may have any finite

value whatever, however small the difference between the

respective quantities a, a', afr

, &c. and A
9
A'

',
Air

9
&c.

When perfectly elastic bodies strike each other, either

directly or by the intervention of levers or any machines

-whatever, the compression and the restitution of the shapes

of the bodies follow the same law, and the action is supposed

to continue until the bodies are restored unto the same re.

spective positions in which they were when the compression

commenced. In this case we shall have a=A, a'~A'
9

a"~A"9
&c. and consequently F.(a 9 a', a"

9 &c.)=:F.(A9

A'9
Alf

, &c.) ;
therefore the living force will be the same

after as before the shock.

The following proof in the case of two elastic bodies im-

pinging upon each other, is derived from the lawi of tht
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by substituting these variations in the expressions of

the variations $/, $/', S/
7

,
&c. of the mutual distances

motion of elastic bodies. Let Fand V be the velocities of

two elastic bodies m and m! before the shock, v and v' their

velocities after, also let u represent their common velocity at

the time of contact ; then as may be seen in the elementary

treatises upon Mechanics

V+m'V
., 9

and the quantity

by substitution becomes m(%

la the shock of in.elastic bodies, the action is only sup.

posed to continue, until the bodies have acquired the

velocities which hinder their acting upon each other any

longer. As therefore the effect of these velocities upon the

mutual action of the bodies is nothing, if we had impressed

these same velocities before the action it would have been

the same, in consequence of the velocities composed of these,

and of the velocities properly belonging to the bodies.

Again therefore, it would be the same if the velocities

impressed were equal and directly contrary to those above

mentioned ;
for the action will not be varied by supposing

that these impressed velocities were destroyed by the opposite

velocities. It consequently follows, that in the shock of

hard bodies the velocities v
9
vf

, D", &c. after the shock,

ought to be such, that if we give these same velocities

to the bodies m, ',
i

7/

,
&c. in a contrary direction,

the equation mV2+m'V'*+ &c. mv* m'v'* m'V72 &c.

=2F(a, a'X, c.) 2F(^, A', A"
9 &c.) given above

will equally have place. But the terms which compose
the second member, as they depend upon the mutual

action of the bodies, will necessarily remain the same;
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of the bodies of the system, of which we have given
the values in No. 15 ; we shall find that the variations

therefore the value of wF2
-fwz

r

F'*-f i^F //8+&c. mv*
m'v'2 wV/2 c. will not be changed by composing the

velocities F, F', F", &c. and the velocities v
9

v'
9 t>", &c.

with the velocities v, u', c", c. respectively. If

therefore the velocity composed of Fand v is represented

by M9
the velocity composed of F' and v' by M' 9

&c. the

following equation will have p!ace,

M2
-f m'M'*+mW*-f-&c.

as the velocities 2 v
9

vf 1?'
?
u'7 v fl

9
Sic. vu;-*sh.

Becaase F, F% F//, &c, are the velocities before the

shock, and v
9

v'
9
v r/

9
&c. the velocities after iiie sair.e, it is

evident that M, M'
9
M"

9 &c. will be the velocities lest by
the shock; therefore mM*+m'M'*+m lfMl/*+&c. will be

the living force which results from these velocities, conse-

quently this conclusion may be obtained. That in the shock

of hard bodies, there is a loss of living forces equal to the

living force which the same bodies would have had, if each

of tliem should have been actuated by the velocity which it

lost by the shock. Vide the Principes Fondamentaux de

I/Equilibre et du Movement, par L. M. N. Carnot; and

the Theorie des Fonctions Analytiques, par J. L. Lagrange.
It is evident from what has been said, that when the bodies

of a system move in a resisting medium, or are subjected to

friction from fixed obstacles, the living forces are constantly

diminished and would at length entirely cease if the bodies

should not be kept in motion by other forces. The formula

Z.J'm(P.djC-\-Q.dy-{-R.dz) in these cases would not be an

exact integral.

In the equation given in the notes at page 144, we may

suppose that the variations &c, 2[y,
and 5s are proportional
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&r, 5y, and S. "will disappear from these expressions.*

If the system be free, that is if it have no one of Hs

parts connected 'with foreign Uodies ; the conditions

relative to the mutual connection of the bodies depend-

ing only upon their mutual distances, the variations

&F, tyj and 5s will be independent of these conditions ;

from which it follows, that by substituting for jr', $/,
J2

;

, jjc", &c. their preceding values in the equation

(PJ> we ought to equal separately to nothing the co-

to the velocities x, y, and z which the bodies have received

by impulsion. We shall then have the equation

in which Swz(^
2
-|-j/

2
-J-5

2
) represents the whole living force

of the system.
* At No. 15, /=

&c. &c.

consequently by differentiation

?/=
V IV*~

&c. &c.

If otf+ cta/ be substituted foretr', 3(jf-H&f/
f r %/j an^ S-

for $3, in the preceding value of 5/, it will become

!/=^=

contain either &c, Sj/,
or Ss. In like manner by making the

proper substitutions, the same quantities will disappear from

the values of $/', $/", &c.
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efficients of the variations &r, \y^ and $2, which gives

these three equations,

*=*.-(-*)
Let us suppose that X, F, and Z are the three co-

ordinates of the centre of gravity of the system; we

shall have by No. 15,

j T/K13T' * , Tfi It j-i T/Yl %
\7 ? nr .

^* -
r v> 3

y -
v> S

-^> - ~^ 3

2.??2 2.WZ
'

2.?72

consequently the following equations may be obtained,

_5^L. o 5^-
rf

3^ S.^J?

(he centre of gravity of the system therefore moves in

the same manner, as if, all the bodies m, m', &c. were

united at this centre, and all the forces which solicit

the system applied to it.

If the system be only submitted to the mutual action

(rf

s
a? "\ dzx

-fa
t

P
I? then S.w. =:2.wP, but

w- ~2^~~9
therefore -^

-^ ; in like manner it may be proved that -rr -r
t7t

_
>

aT1 *""
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f the bodies which compose it, and to their reciprocal

attractions, \ve shall hare

0=2.mP ; 0=2. Q ; Q=2.mR ;

for, from expressing by p the reciprocal action of m
and m' whatever may be its nature, and denoting by/
the mutual distance of these two bodies, we shall have

in consequence of this sole action

+, + J
from which we may obtain

Q=mP+i'P't ; Q=mQ+m'Q'; =m#-|-m'72' ;

and it is evident that these equations have place also

in the case in which the bodies exercise upon each
other a finite action in an instant. Their reciprocal
action will therefore make the integrals 2,.mP, 2,.mQ
and 2.mR disappear, consequently they are nothing

* If from one extremity of the line /a line be drawn pa.
rallel to the axis of #, and from the other extremity another
perpendicular to it, we shall have by No. 1. notes,/ : # x '

p(xx')-
: : p :

- -
,
or the resolved force acting in a direction^

parallel to the axis of x, therefore P ^-- in like

ffianoer mQ=
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when (he system is not solicited by forces unconnected

with it. In this case we have

t* dt*

and by integrating

X=za+bt ; Y=a'+Vt ; =a fl

, , a', b'y afi

, b", being constant quantities. By ex-

tracting the time
,
we shall have an equation of the

first order either between X and F, or between X and

; from which it follows, that the motion of the centre

of gravity is rectilinear. Moreover as its velocity is

equal to ^f ,
or to

)
it is constant, arid the motion is uniform.

It is evident from the preceding analysis, that this

inalterability of the motion of the centre of gravity of a

system of bodies, whatever may be their mutual actions,

subsists also in the case in which some of the bodies

lose during an instant by this action, a finite quantity

of motion*.

* T/..T. V ' V " * <y '* If the equations JT= . Frz -. and Z~
2m. S.m' s.wz

are differentiated with respect to the time they will give the

following

dX dx dY dy dZ d*
S.w. -zzS.7w.-r-, S.TW.- ZZ2.W.-J 2,m.=2.m. -.

dt dt dt dt dt dt

As <he simultaneous impact of a part of the bodies will

change in general the velocities of all the bodies on account

of their mutual connection, let
, 6, and c represent the

velocities of the body m in the respective directions of the

so-ordinates, or the values of ^p -^, and ^- immediately
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. If we make

the variation &r will again disappear from the expres-

before the impact ', b'
9
and c' those of ml &c. and ^, Z?,

and Cthe values of these velocities immediately after for the

body m
9 A', B', and C1

the values for the body m r

,
&c. in

this case before the impact we shall have

v dX dY _ _ dzm.2,ma
9 2w. zz2m&

3
2/w. -7-

and after

_
. ,.-, Zm.

e/^

The quantities of motion lost by al! the bodies at the in-

stant of impact should be such as would cause an equilibrium

in the system ; these forces in the respective directions of the

co-ordinates x, /,
and z are ma mA

9
mb mB, and me

mC
9
which for all the points of the system are 2>ma 2,.mA,

"2,.mb S.mB, &c. These quantities, as the system is not

supposed to contain any fixed point, are respectively equal

to nothing, consequently S.mn:S.m^, X.:^.wJ5,

&c. therefore the values of -7-, -T-, &c. are the same after
dt j dt 7

as before the impact, and the velocity of the centre of gravity
f the system is the same in quantity and direction.

The following is a proof of its truth in the simple case of

the impact of two non.elastic bodies obtained in a very
different manner.
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sions S/, $f, /', &c. ; by supposing therefore (he

system free, as the conditions relative to the connection

Take upon the right line which the bodies describe any

point whatever for the origin of the spaces described, let x and

x' represent the distances of two non. elastic bodies m and ml

respectively from that point at the end of the time
tf,

and X that

of their centre of gravity, then by the known laws of the

motion of non.elastic bodies given in elementary treatises

mx -f- m' x'

upon Mechanics JC -- ; if v and v be the respective
m-\-m'

velocities of the bodies m and m1

before, and F their common.

velocity or the velocity of their centre of gravity after the

shock then Fzz--r , as is well known ; but the velo-
m -f m

7 V
city of their centre of gravity before the shock is

dx . dx'
m. --\-m. . , dx , dx

dt
^

dt ,
therefore as n: y. and t/. the ve-'

dt dt

locity of their centre of gravity is the same before as after

the shock.

Let the bodies which compose a free system be supposed

to be acted upon only by impulses, and in the equation given

in the notes page 144, let&e+r/, ^-f%//, &c. be substituted

for ^', $/, &c. and the forces S, S'
,
Sff

,
&c. be reduced

to the rectangular forces P, <2, R, P', &c. then the follow.

ing equations may easily be proved from what has preceded,

0=2.(mi P), OzzS.CmjJ-Q), 0=2.(mz R).

If the co-ordinates #, ^/,
and 2 are referred to the centre of

gravity of the system we shall have

which being differentiated relative to *, by making (/JTzz

Xdt, dY=YM, dZZdt; dv=xdt, dy^ydt, dz~zdt,

dx'~x'dt, &c. we shall have
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of the pads of the system, only influence the variations

/, /', &c. the variation &a? is independent and arbi-

trary ; therefore if we substitute in the equation (P)
of No. 18, in the places of $#', &&", &c. ; fy, ty', //,

&c. their preceding values; we ought to equal sepa-

rately to nothing the co-efficient of #, \vhich gives

from which we shall obtain by integrating with respect

to the time t,

c being a constant quantity.

We may in this integral change the co-ordinates y^ y'^

&c. into z
9 s', &c. provided that we substitute instead

of the forces <?, (?', &c. parallel to the axis ofy, the

forces Jf2, R', &c. parallel to the axis of 2 ; which gives
xdz zdx

cf being a new constant quantity. We shall have in

like manner

being a third constant quantity.

and consequently

JSm SP0, YI,m 2Qzz0, Z2m 2/2=0.'

These equations shew that the velocities given to the centre

of gravity are the same as would be given if all the bodies

of the system were united at Hand received at the same time

the impulses 2P5 2Q, and 2R.
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Let us suppose that the bodies of the system are only

submitted to their mutual action, and to a force di-

rected towards the origin of the co-ordinates. If we

name, as above, p the reciprocal action of m and of m',

we shall have in consequence of this sole action

0=m.CP#Qat)+m'.(P'y'Q lxl

) *;

thus the mutual actions of the bodies will disappear

from the finite integral ^,.m(Py Qx). Let S be the

force which attracts m towards the origin of the co-

ordin^tes; we shall have in consequence of this sole

force,

S.x S.y
jp . _ f O y

.

-yV-f^-fa* -Va,4#a+s*
'

the force S will therefore disappear from the expression

Py Qx; consequently in the case in which the

* The notes given to the preceding number, render it

unnecessary to say any thing respecting the equations given

in the first part of this, as they may be proyed in a similar

manner. The equations *2.m(Py Q#J 0, &c. are evi-

dently true, as 2.mPzz:0, Z.wQmO, and S.mEzzO. See

the last number.

f If a radius vector is drawn from the body m to the

origin of the co-ordinates, it will be equal to v/Y#2
-f-#

2+
z2
) ; by drawing a perpendicular from m to the axis of x

we shall have from resolving the force S, which must be

taken negatively as it tends to diminish the co-ordinates,

into -two others one acting in the direction of the axis and

the other perpendicular to it, the following proportion,

-^+s2
-) : % :: g : P, therefore
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different bodies of the system are only solicited by their

action, and their mutual attraction, and by forces

directed towards the origin of the co-ordinates we

shall have

If we project the body m upon the plane of .r

the differential -~^
-- will be the area, which the

radius vector drawn from the origin of the co-ordinates

to the projection of m traces during the time dt* ;

*
Suppose that A (Jig. 15,) represents the origin of the

co-ordinates x and y which are measured along the rectan.

gular lines AX and AY
9
and N the place of a body or its

projection, which is supposed to move along the curve

ACN9 having AP=iy and PN=:AX~xfor its co-ordinates ;

then the area ACN described by the radius vector AP drawn

from the centre A to the point A', is equal to the area AC
NP minus the area ANP, but the area ACNPfxdy+c,

and the area ANP=:, therefore the zrea.ACNi=fxdy+c

-- and consequently its differential ~xdy d.-^-~

_ xdy_ ydx_ xdyydx.__ ___ _

If # f.cos.w and# ^.sin.'a-, see page 21
; by substitution

and neglecting indefinitely small quantities of the second

y ydx cd-n
order,

----- ___
?
uhich is the area of the sector

described by AN during the time dt.
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the sum of these areas multiplied respectively by the

masses of the bodies, is therefore proportional to the

element of the time; from which it follows, that in a

finite time it is proportional to the time. It is this

which constitutes the principle of the preservation of

areas*.

The fixed plane of x and y being arbitrary, this

principle has place for any plane whatever; and if the

force S is nothing, that is to say, if the bodies are only

subjected to their action and mutual attraction, the

origin of the co-ordinates is arbitrary, and we are able

to place that fixed point at will. Lastly, it is easy to

perceive by what precedes, that this principle holds

good in the case in which by the mutual action of the

bodies of the system, sudden changes take place in

their motions t.

* The product of the mass of a body by the area described

by the projection of its radius vector during an interval of

time denoted by unity, is equal to the projection of the

entire force of this body multiplied by the perpendicular let

fall from the fixed point upon the direction of the force thus

projected. This last product is the moment of the force

which wonld make the system turn about an axis passing

through the fixed point in a perpendicular direction to the

plane of projection. The principle of the preservation of

areas may therefore be reduced to this
;

the sum of the mo.

ments of the finite forces that would make the system turn

about any axis whatever, which is nothing in the case of

quiiil)rium, is constant in that of motion. In this point of

view the principle answers to all the possible laws between

the force and the velocity.

It appears from what has been said, that the law of the

motion of the centre ofgravity and that of the areas described
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There is a plane with respect to which c
f and c f/ are

nothing which, for this reason, it is interesting to

know ; for it is evident that the equality of c
1 and c'

1

to nothing, ought to introduce the greatest simplicity

into the research of the motion of a system of bodies.

In order to determine this plane, it is necessary to refer

the co-ordinates x^y^ and z to three other axes, having
the same origin as the preceding. Let therefore Q re-

present the inclination of the plane sought that is formed

by two of these new axes, to the plane of as and y ; and

4 the angle which the axis of x forms with the intersec-

9F

tion of these two planes; so that -
may be the in-

clination of the third new axis to the plane of x andyr

and -
4- may be the angle which its projection upon

the same plane makes with the axis of #, TT being the

semi-circumference*.

being proportional to the times, (which last "will again be

noticed in this number) are independent of the mutual action

of the bodies of the system ;
these two laws Have therefore

a more universal application than the law of the preservatioiji

of living forces, which is oniy independent of those passive

resisting forces such as the pressures of the bodies, the ten,

sions of the threads or rods connecting them, Sec. whiclj

hinder the conditions of the system from being disturbed, or

la general all those forces which can bs expressed by (qua.
tions between the different co-ordinates of a body, whick
are independent of the time.

* In (Jig. 16,) let the lines Ax, Ay, and Az represent
the axes of the three rectangular co-ordinates a?, ^r,

and z.?
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In order to fix our ideas, let us suppose that the

origin of the co-ordinates is at the centre of the earth ;

that the plane of x and^/ is that of the ecliptic, and

that the axis of z is a line drawn from the centre of the

earth to the north pole of the ecliptic ; let us also sup-

pose that the plane sought is that of the equator, and

that the third new axis is that of the rotation of the

earth directed towards the north pole ; will then be

the obliquity of the ecliptic, and %}/ the longitude of

the fixed axis of x relative to the moveable equinox of

spring. The two first new axes will be in the plane of

the equator ; and by naming cp
the angular distance of

the first of these axes from this equinox, (p will repre-

sent the rotation of the earth reckoned from the same

equinox, and
2+ ^ w^ ^e tne angu^ar distance of the

the line Ae the common section of the planes x y and

and let another plane be supposed to pass through the point

A perpendicular to Ae the common intersection of the planes,

cutting the plane x' y' in the line Ad and the plane ocy in the

line aAb; the.n as every line drawn from the point A per-

pendicular to the common section Ae must be in the perpen.
dicular plane, the axes Az and Az' of the ordinates z and z

1

are in it, consequently as the angle dAb or is the inclina.

tion of the two planes and the angle dAz' is a right angle,

the angle z'Aa formed by the ordinate z' and the plane xy is

it

represented by 9. Also the angle xAe formed by the

intersection of the planes xy and x'y
1 and the ordinate x is

represented by 4/, and the angle xAa, as the angle aAe is a

right angle by
-

%}/.
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second of these axes from the same equinox : let these

three axes be named principal axes. This being- agreed

upon, suppose xn y,^ and z
f
to be the co-ordinates of

m relative, first, to the line drawn from the origin of

the co-ordinates to the equinox of spring ; x, being

taken positive on the side of this equinox ; secondly,

to the projection of the third principal axis upon the

plane of x and y\ and thirdly, to the axis of z; we

shall then have*

* In (fig. 17,3 let A be the centre of the co-ordinates,

the perpendicular lines AX
,
and AY

f
the axes of the co-

ordinates x, and yn and the perpendicular lines AXand. AY
the axes of the co-ordinates x and y making with the former

lines the angle 4/, also suppose the line AM to represent

the projection of the line drawn from the origin of the co-

ordinates to the body m upon the plane of the x^s and y's^

from the point 3/draw the lines Mx
f
and My t perpendicular

to the lines AX
t

and AYn and the lines MX and My perpen.
dicular to the lines ^LYand AY^ then we shall have Mx

f~yj9

Myl~AiffzzxD Mx~y and My yfr x
?

also the angle

X
tAX~-^) and the angle Aaxt

formed by the intersection

of the lines AX and Mx^QO ^' ^n the right angled tri-

angle aAx
t by trigonometry cos. -^ rad. (1) :

Aa^n. -,
also rad.(l) : sin.-vj/ : : ^

sin.^ sin.^- _

COM;
;
then as Jfcfj:/=y/>

**=*'Ht5i*'
Intheri5ht

angled triangle M#, as the angle Me*

Y
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Let x,,) ylt )
and za be co-ordinates referred, first, to

the line of the equinox of spring ; secondly, to the per-

pendicular to this line in the plane of the equator ;
and

thirdly, to the third principal axis, then we shall have

Lastly, let xlln ?///l9 and z
in be the co-ordinates of m

referred to the first, to the second, and to the third

principal axis respectively ; then

.r,,
r

//y .cos,<p ^///.sin.p ;

From which it is easy to conclude, that

.sn.^;

i^=.r/// .{cos.0.cos.4/.sin.(p sin, 4.. cos. <p}

-\~ijin .{
cos. 9 . cos . -4". cos. (p-[-sin .4 . sin . < }-\-z IJ/

. sin.

.COS.4/ ;

the angle aMx^i an^ by trigonometry rad.(l) : sin.

(sin.4/
\

y-*<-~^j
'

sin. 2
4/.: = *r cos. 4- +y,.

in in the triangle aMx, by trigonometry rad. (1)

cos.

gin. 4/

In a similar manner the co-ordinates relative to the other

axes may be found.
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By multiplying these values of a?, y, and 2 respect-

ively by the co-efficients of xn ,
in these values, we shall

have from adding them together

-{-y.{cos.0.cos.4,.sin.<p sin.\J/.cos.(p} s.sin.Q.sin.p.

By multiplying in like manner the values of x, y^
and z respectively by the co-efficients ofytll

in these

values and afterwards by the co-efficients of znn we

shall have

^///n=,r.{cos.6.sin.v},.cos.(?) cos. >J/, sin.?)}

.,.sin.( z. sin. 9.cos. <.

These different transformations of the co-ordinates

will be very useful to us as we proceed. If we place

one, two, &c. marks above the co-ordinates #, y^ z,

xfln yttn and zlln we shall have the co-ordinates cor-

responding to the bodies m 1

,
m1

*, &c.

From the above \i is easy to conclude by substituting

xdy ydx xdz
c, c f

, and c" in the places of S.TTZ.
-

^- , S.m,

zdx ydzzdy--
,

and S.m. 9 that

sin.-^;

.

cos. 9. cos. \|/. cos.

cos.9.cos,-4/.8in.(p}
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If we determine 4> and so that we may have sin

c/y c
'

which give

COS. <

we shall have

* Let a, ,
and y represent the angles which a perpendi-

cular to the invariable plane respectively makes with the

axes #, y, and z we shall then have the following equations,

cos.zz sin. 0. sin.4^

cos./3:nsin.0.cos.4',

COS.y^ZCOS.0.

In order to prove that cos.arzsin.0.sin,-4/ ?
let C (Jig 18) be

supposed the centre of the co-ordinates, CX the axis of #,

CF the line of intersection of the planes xy and
tf//^///,

CA
the axis of z

a/ which is perpendicular to the line CF from

any point A of the line CA let fall the perpendicular AB
upon the plane xy, join CB, then CB will be the projection

of the line CA upon that plane; let the angle of the inclina-

tion of the planes xy and x
jayUl

be represented by 0, then

9T

its complement the angle ACE will be 9, TT being the

semi.circumference of a circle the radius of which is unity.

From A draw AD perpendicular to CX and join BD 9
let
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the values of c' andc" are therefore nothing with respect

to the plane of xui
and y,,,

determined in this manner.

There is only one plane which possesses this property,

for supposing it is that of x andy, we shall have

the angle FCX be denoted by 4/, then its complement the

angle XCB will be -- %!/. If AC is supposed to repre-

sent the radius equal to unity of a circle, then BCzzsin.5.

and, as the triangle BDC is right angled, by trigonometry
we have

rad.(l) : sin, 4, : : JBC(sinJ) : Cflzzsin.O.sin.^ ;

but CD is the cosine of the angle ACD of inclination of the

axes z
tll
and #, therefore cos.a sin.0.sin.-4/.

From the centre C of the co-ordinates draw the line CY
perpendicular to CX or the axis of #, then CY will repre-
sent the axis of y, from A let fall the perpendicular AY
upon CK, join BY. In the right angled triangle UFCwe
have

rad.(l) : cos.^ : : O?(sin.d) : CFsin^.cos.^ ;

but CFis the cosine of the angle ACY or
/S,

therefore cos.

The angle formed by the axes z and z
ni

is equal to that

formed by the planes xy and x
iay,H consequently cos,yrrcos.fi.

We have therefore the following equations,

cos.a:nsm.0.sin.4/m
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By equalling these two functions to nothing, we shall

Lave sin.SrrrO ; that is the plane of x,n and yHl
then co-

incides with that of x and y. The value of 2.m.

being equal to /^j^7^^", whatever

may be the plane ofx and y ; it results that the quan-

tity c*-{-c
/2+c//2

is the same, whatever this plane may
be, and that the plane of x

ltt
and yin determined by

what precedes, is the plane relative to which the

functionS.m.'i' js the greatest* ; the plane

from which the position of the plane may be readily found.

It appears preferable to take c' S.w.---- instead of

2.w.--- in which case cos. /3 would be affirmative.
at

As the quantities c, c', and c" are constant the position of

the plane is invariable.

* As the quantity c*-}-c!*+c
f/* * s invariable whatever may

be the plane of x and ^, let
a?', z/',

and z' represent the co-

ordinates of any other system of rectangular axes about the

same point, as those of x, ?/,
and z, then if a, d

,
and a"

have the same relation to the planes formed by these co-

ordinates as c, c', and c" have to those formed by the

co-ordinates x, #, and z, we shall have z
-{-a'

2+ a//2 c2 "f

zo therefore 1/c2
-f </a_fc"

2
a'

2 o^ ;
conse-

quently, when / and a" vanish is a maximum and equal

to t/cTfc^+c**.
We may at any instant find the position of the invariable

plane relative to any determinate point in space, if we know
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we are treating about therefore possesses these remark-

able properties, first, that the sum of the areas traced

by the projections of the radii vectores of the bodies

and multiplied respectively by their masses, is the

greatest possible ; secondly, that the same sum relative

to any plane whatever which is perpendicular to it is

nothing, because the angle <p remains indeterminate.

AVe shall be able by means of these properties to find

this plane at any instant, whatever may have been the

variations induced by the mutual action of the bodies

in their respective positions, the same as we are able

easily to find at all times the position of the centre of

gravity of the system ; and for this reason it is as natu-

at this instant the velocities and the co-ordinates of all the

moving bodies of the system, as the position of this plane

with respect to the centre of the co-ordinates depends upon
the three quantities c, c', and c" which are respectively equal

to2..- . S.. -nd S.. y

~ z.-~ I. These quantities are evidently composed of

the co-ordinates of the moving bodies and the components
of the velocities parallel to their axes.

It appears from the above that c is equivalent to the sum

of the moments taken with reference to the centre of the co-

ordinates and projected upon the plane xy of the quantities

of motion of the bodies m^ m', &c. at any instant ;
c' and c"

are the sums of the moments of these forces taken with re.

spect to the same point and projected upon the planes of xz

and yZ) consequently the invariable plane coincides with the

principal plane of these moments ; seepage 114.
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ral to refer the x-s and ys to this plane, as to refer the

origin of the co-ordinates to the centre of gravity of the

system*.

* If two or more bodies of <he system strike each other,
the position of the invariable plane will not be altered either

with respect to a fixed point, if the system turns about it,

or with respect to any point whatever, if the system moves

freely in space. In order to prove this, it will be necessary
to shew that the values of c, c', and c" are the same after as

before the impact, for which purpose the denominations

given page 160 notes, will be made use of. This proof
follows from the quantities of motion lost by the impact pro.
ducing equilibrium, which will give the following equations,

C)z(b B)} 0,
which are part of the six general equations of equilibrium
No. 15, and are equivalent to the three following

2m(xb ya)~2m(xB yA) ,

2m (xc za)-=2,m(xC zA),

'2m(yc zb)^=2,m(yC zB).
It is evident that the first members of these equations are

the values of c, c',
and c 11

immediately before the impact and

the second members their velocities immediately after, there.

fore these values are the same after as before the impact.
It therefore appears that the sums of the areas denoted by

e, c'ty aiidc^l are notaitered by the mutual impact of the

bodies of the system ;
these areas will consequently always

be proportional to the time employed to. describe them,

although in the interval of that time sudden changes may
have been produced in the velocities of the bodies from their

mutual impact. The impact of a body not belonging to the

system will in general change the values of these areas and

consequently the Direction of the invariable plane.
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22. The principles of the preservation of living

forces and of areas have place also, when the origin of

When a system, at liberty to turn in any direction about

a fixed point, receives a number of impulses, after they have

been reduced to three P, Q, and R in the directions of the

&T, y. and s, the accelerating forces > , and -

;..
dt* dt 2 dt z

be changed into the velocities
a?, y, and z and we shall

have by substitution (see the beginning of this number) the

following equations,

'-3/<0+ 2><

for the first instant of the motion produced by the impulses.

If the system is entirely free, the point may be taken any
where in space and the above equations will hold true. This

will also be the case if there is no fixed point and the system
turns about its centre of gravity.

If there are no accelerating forces, the effect of the im-

pulses will be continued, the terms which depend upon the

impulses P, Q, and R being regarded as constant. For, as

ff, y^ and sare the velocities in directions respectively paral-

lel to the axes of x
9 #, and z, we have dx~xdt, dyydt^

dzzdt, &c. and the above equations will be changed into

the following,

consequently

c=2.(Qx
'=?,.(RxPz),
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the co-ordinates is supposed to have a rectilinear and

uniform motion in space. To demonstrate it, let X
9

I
7
,
and Z be named Ihe co-ordinates of this origin,

supposed in motion, referred to a fixed point, and let

&c. &c. &c.

MI! yv ,
s

t , .I'/j &c. will be the co-ordinates of w/, m',

&c. relative to the moving origin. We shall havg by
the hypothesis

but we have by the nature of the centre of gravity when
the system is free

0=2^1^X+d2^} Z.m.P.dt*-,

the equation (Pj of No. 18, will also become by sub-

stituting aX+fcr,, 5I4-^> &c. instead of^, Jy, &c. ;

-P

an equation which is exactly of the same form as the

equation (P} 9
if the forces P, Q, and /^ only depend

upon the co-ordinates ^O y, ? s,, ^/ &c. By applying

The values of the constant quantities c, c', and c" may
therefore be expressed by the initial impulses given to each

body, and it has been shewn that these values are the sums

of the moments of these impulses with respect to the axes of

x, y, and s.
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io it the preceding analysis, we shall obtain the prin-

ciples of the preservation of living forces and of areas

with respect to the moving origin of the co-ordinates.

If the sys-em be not acted upon by any forces uncon-

nected with it, its centre of gravity will have a right

lined and uniform motion in space, as we have seen at

No. 20; by fixing therefore the origin of the co-

ordinates X) ?/ 9
and s at this centre, these principles

will always have place, X, Y9 and Z being in this

case the co-ordinates of the centre of gravity, we shall

have by the nature of this point,

0=S.m,^; 0=2.m.y^;
which equations give

* If X+Xv F-f^, Z+s,, &c. be substituted for x> y,

z, &c. in the equations

and regard be had to the equations
7-t ~\7"

--.
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Thus the quantities resulting from the preceding

principles are composed, first, of quantities -which

we shall have the following transformations,

which are similar to the original equations. If the quanti-

ties PytQx^ &c. disappear, we shall by integration have*

the following equations,

at

These equations are similar to those given in the last number

and the same consequences may be deduced from them.

In like manner the equation

may by similar substitutions be changed into the following,

which only differs from it in having the co-ordinates referred
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wonll have place if all the bodies of the system were

united at their common centre of gravity ; secondly, of

quantities relative to the centre of gravity supposed

immoveable; and as the first of these quantities are

constant, we may see the reason why the preceding

principles have place with respect to the centre of

gravity. By fixing therefore at this point the origin of

the co-ordinates #, y, z, x
f

,
&c. of the equations (Z)

of the preceding No. they will always have place, from

which it results, that the plane passing constantly

through this centre and relative to \\hich the function

xduydx ,

S.m. is a maximum, remains always parallel

to itself during the motion of the system, and that the

same function relative to every other plane which is

perpendicular to it is nothing.

The principles of the preservation of areas and of

living forces, may be reduced to certain relations

amongst the co-ordinates of the mutual distances of the

bodies of the system. In fact the origin of the ,r's, of

the ys, and of the s's being always supposed at the

to the centre of gravity instead of a fixed point. By inte.

gration, if the quantity 2*.m.(Pdx l -\-Qdy l -i- Rdz^ be in.

tegrable and supposed equal to c/<p,
we shall have the foil owing

equation for the preservation of living forces with respect to

the centre of gravity,

c being a constant quantity.
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centre of gravity, the equations (Z) of the preceding
No. may be changed into the following forms,

(dx'dx) >

.2.M=2.^'.
\

(dx'dx) >

It may be observed that the second members of these

equations multiplied by dt, express the sum of the pro-

jections of the elementary areas traced by each right

line that joins two bodies of the system, of which one

is supposed to move about the other that is considered

as immoveable, each area being multiplied by the pro-

duct of the two masses which the right line joins.

If we apply the analysis of No. 21, to the preceding

equations, we shall perceive that the plane which passes

constantly through any one of the bodies of the system,

and relative to which the function 2mm f
.

f
. 5 (x

1
-

_ ls a maximum, re-

mains always parallel to itself in the motion of the

system; and that this plane is parallel to the plane

passing through the centre of gravity relative to which

the function 2.m.-- is a maximum. We shall

perceive also, that the second members of the preceding
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equations are nothing relative to every plane which

passes through the same body, and is perpendicular to

the plane of which we have treated*.

* The positions of the invariable planes of the same system

relative to two different points in space may be compared as

follows
-,

let
, /3,

and y represent the co-ordinates of a new

point in space, and C, C'
9
and C" the values of c, c', and <P

when the origin of the co-ordinates is placed at this point ;

we shall then have, for instance,

C du dx~)

If the sum of the masses of all the bodies be denoted by M
and the co-ordinates of the centre of gravity of the system by

X, Y, and Z, then

d dY dx dX

therefore

dii dx\ du dx

ax d

iu-*-
In like manner

/ a

\?-iu-*-d;

ax

It is evident from the above, that if the values of
? J3,

and

7 be such as to render the three quantities

dX dY dX dZ dY dZ *

MS^IP y
"di-~*-dt'

*m

T?r+'Tp
respectively equal to nothing, we shall have Czrc, (7zrc',

and CH c f/

9 consequently the invariable planes relative to

the two centres of co-ordinates will be parallel to each other,
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The equation Q of No. 19 may be put info the form

dy?-\~(dz'-dz)**}~---!-- 1 const
at*

an equation relative solely to the co-ordinates of the

mutual distances of the bodies, in which the first

member expresses the sum of the squares of the relative

velocities of the bodies of the system about each other,

considering them two and two and supposing one of

the two immoveable, each square being multiplied by
the product of the two masses which we have con-

sidered.

23. By resuming the equation (/?) of No. 19, and

differentiating it with respect to the characteristic 5, we

shall have

As in this case the centre of gravity of the system mores

dX dY
uniformly in a right line, its relative velocities

-y->
r- and

dZ~ are constant, therefore the three above mentioned quan.

tides will be eqnal to nothing when (he line joining the two

centres is parallel to that described by the centre of gravity

of the system. The invariable planes relative to all the

points of any line parallel to that described by the centre of

gravity of the system are therefore parallel to each other ;

and the direction of the invariable plane does not change

but when it is passing from one parallel to another. It is

also evident that the invariable plane relative to the centre

of gravity of the system always remains parallel to itself

during the motion of that centre.
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the equation (P) of No. 18, then becomes

.x.d.~-- td.--^z.d.l t.mdt.vdv.

Let ds be (he element of the curve described by m ,

dsr the element of that described by m'
y &c. ; we shall

have

vdt=ds ; i/flfer^' ; &c.

z* ; &c.

from which we may obtain by following the analyst*

of No. 8,

By integrating this equation with respect to the differ-

ential characteristic </, and extending (he integrals to

the entire curves described by the bodies m y m'y &c.

we shall have

dx.fa+ dy .ty+dz 5s

the variations JJT, S;y, Jg, &c. being thus but the constant

quantity of the second member of this equation, relative

to the extreme points of the curves described by m9

in', &c.

It follows from the above, that if these points ar

supposed invariable, we shall have

S.S./wwfo;

which shews that the function S.fmvds is a minimum*.

* As ds~vdt, the function Z.fmvds which is a maximum

or a minimum may be made to assume the form S.m/
2<# or

fdl.E.mv*) in which Z.mv* denotes the living force of the

whole of the system at any instant whatever* Therefor* th*
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it is in this that fhe principle of the least action in the

motion of a system ofbodies consists ; a principle which,
as we have seen, is only a mathematical result from the

principle treated upon may be properly reduced to this, that

the sain of the instantaneous living forces of all the bodies

from the time that they depart from certain given points

until they arrive at other given points, is either a maximum
or a minimum. Lagrange therefore proposes to call it the

principle of the greatest or the least living force, as con-

sidered in this manner it has the advantage of being general

as well for the state of motion as for that of equilibrium ; for

it may be proved, that the living force of a system is always
the greatest or the least in the state of equilibrium, from tne

equation

In this equation if Z.mv 2 is a maximum or a minimum the

fauction
<p is, generally speaking, a maximum or a minimum,

consequently

This is the equation of the equilibrium of a system when the

forces P, Q, and R are respectively functions of the lines

X
9 y y

and z ; it gives the following principle, first made

known by M. de Courtivron, The situation in which a

system has the greatest or the least living force is that in

which, if it were placed, it would remain in equilibrio.

The equilibrium would be stable if the sum of the living

forces should be a maximum and unstable if a minimum; for

the bodies of the system when moved from the situation of

equilibrium would tend to return to it if the equilibrium

were stable, their velocities would therefore diminish as they

receded from It, consequently the living force would be a

maximum in this position ; but it would be a minimum if the

equilibrium were unstable, as the bodies in Preceding from
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primitive laws of the equilibrium and of the motion of

matter. We have seen at the same time, that this

principle combined with that of living forces, gives

their position relative to this state would tend to recede

from it still farther by reason of the increase of their velo-

cities.

In a system of bodies let g denote the force of gravity, M
the sum of the masses of the bodies, anc- z the co-ordinate

of the centre of gravity of the system, the axis of z being

supposed vertical and in the direction of gravity, the equa-
tion of living forces relative to this system will be as follows,

2 ,m v 2 c-^-gMz,

which shews that 2.mv z will be a maximum or a minimum
at the same time as z.

When the moving bodies are not acted upon by any

accelerating forces, the sum of the living forces at each in.

fctant is constant, consequently the sum of the living forces

for any time whatever is proportional to that time, from

which it follows, that the system passes from one position to

another in the least time possible.

In the case of perfectly hard or of perfectly elastic bodies,
the sum of the products of each mass by the square of the

difference between its velocities before and after the impact
is a minimum. This answers to the principle of the least

action.

The three equations (a), page 177, combined with that

of living forces

(see page 157) give a property de maximis et minimis relative

to a line about which the system turns iq the first instant
when it has received any impulse whatever, which line may
be called the axis of spontaneous rotation.
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the equation (P) of No. 18, which contains all that is

necessary for the determination of the motions of the

system.

Let a, 6, and c represent the parts of the velocities x
r y y

and 2 which depend upon the change of position of the

bodies of the system with respect to each other ; when they
are added to the velocities resulting from the rotations page

107, the complete values of x, y, and 3 will be expressed
as follows

If these equations are differentiated, 4/, u
}
and p being re.

garded as variable, we shall have

The three equations (a) being multiplied respectively by
* *

Sp, Sw, and J4> and added together, making the variationg

J^, S^j and ^4/, which are the same for all the
bodies, pasg

under the sign 2, will give by the substitution of the pre.

ceding values

The above equation of living forces, being differentiated

with respect to , gives

By the comparison of these equations it is evident that

-L.mfxix 4yty -f *J=0,
consequently

l..mjf
a
fy

ft+*V=0
This equation shews that the living force which the system

acquires by impulsion, is always either a maximum or amin.

imum with respect to the rotations relative to three axes;

and as these rotations may be composed into one about the
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Lastly we have seen at No. 22, that this principle

has place also, when the origin of the co-ordinates is

in motion ; provided that its motion be right lined and

uniform and that the system be free.

axis of spontaneous rotation it follows, that this axis is in

such a position as to have the living force of all the system

the greatest or the least with respect to it.

This property of the axis of rotation with respect to solid

bodies of any form was discovered by Euler, and extended

by Lagrange to any system of bodies either invariably con.

nected together or not, when these bodies receive any

impulses whatever.
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CHAP. VI.

Of the laws of the motion of a system of bodies in all

the possible mathematical relations between

the force and the velocity.

24. K have before observed at No. 5, that there

are an infinite number of ways of expressing the force

by the velocity, which do not imply a contradiction.

The simplest of them is that of the force being propor-

tional to the velocity, which as we have seen, is the

law of nature. It is according to this law, that we

have explained in the preceding chapter the differential

equations of the motion of a system of bodies ; but it is

easy to extend the analysis of which we have made use,

to all the mathematical laws possible between the velo-

city and the force, and thus to present under a new

point of view, the general principles of motion. For

this purpose, let us suppose that F being the force and

v the- velocity, we have F=Q(v) ; (p(v) being any
function whatever of v : let us denote by <p

f

(v) the

differential of q(v) divided by dv. The denominations

of the preceding numbers always remaining, the body
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m will be acted upon parallel to the axis ofx by the force

. *. In the following instant this force will be-
CIS

dx . dx
come t

y 1 ,
because y =0. Moreover P 5 9, and 72 being

the forces which act upon the body m parallel to the

axes of the co-ordinates : the system will be by No. 18,

in equilibrio in consequence of these forces and of the

differentials d.

\ dt -o

taken with a contrary sign ; we shall have therefore

instead of the equation (P) of the same number the

following;

which only differs in this respect, that ,
-^-,

and ---

are multiplied by the function -
; which may be

supposed equal to unity in the case Of the force being

proportional to the velocity. But this difference ren*

ders the solution of the problems of mechanics very
difficult. Notwithstanding we can obtain from the

equation (SJ, certain principles analogous to those of

the preservation of living forces, of areas, and of th

centre of gravity.

If we change for into dx9 ly into rfy, and $a into tfsr,

&c. we shall have
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and consequently

By supposing !L.m>(Pdx-\-Qdy-{-Rdz) an exact

differential equal to d\, \ve shall have

2.fmvdv.q>'(v)=const.-{-\ ; (T)

an equation analogous to the equation (R) of No. 19,

and which chanes into it in the case of nature where

The principle of the preservation of living forces has

place therefore, in all the mathematical laws possible

between the force and the velocity, provided, that we

understand by the living force of a body, the product
of its mass by double the integral of its velocity multi-

plied by the differential of the function of the velocity

which denotes the force.

If we suppose in the equation (S), fa^=j,r-f-*.r/ ;

ty'=*y+ty/ ; 9z'=*z+*z/ ; *^==*ff-B*/
r

; &c.; we

shall have by equalling separately to nothing the co-

efficients of &r, Sy, and J,

These three equations are analogous to those of No.

20, from which we have deduced the preservation of

the motion of the centre of gravity in the case ofnature,

where the system is only subjected to the action and

mutual attraction of the bodies of the system. In this
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case S.raP, S.mQ, and 2.mR are nothing and we

have

v dx <p(v) dy <p(v)
const.=2.m.-r-. ; const.=2.m. . ;

at v at v

dz e>(v)
const.=2.^.---. ;dt v

m . . is equal to mQ('o). )
and this last quantity

is the finite force of a body resolved parallel to the axis

of x\ the force of a body being the product of its mass

by the function ofthe velocity which expresses the force.

Therefore the sum of the finite forces of a system

resolved parallel to any axis whatever, is in this case

constant whatever may be the relation of the force to

the velocity ; and what distinguishes the state of motion

from that of rest is, that in the last state this same sum

is nothing. These results are common to all the

mathematical laws possible between the force and the

velocity ; but it is only in the law of nature that the

centre of gravity moves with an uniform and rectilinear

motion.

Again, let us suppose in the equation (S} 9

the variation Ix will disappear from the variations of

the mutual distances /, /', &c. of the bodies of the

system and of the forces which depend upon*these

quantities. If the system is free from obstacles inde-

pendent of it, we shall have by equalling to nothing

the co-efficient of $#,

9m
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from which \ve may obtain by integration

We shall in like manner have

m

c, e', and c* being constant quantities.

If the system is only subjected to the mutual action

of its parts, we have by No. 21, 'Z.m.(Py--Qx)=Q:>

?,.m.(PzRx)=; 2.m.(Qz %;=0; also,

i #. - u. V is the moment of the finite
\ dt ^ dt/ v

force by which the body is actuated, resolved parallel

to the pjane ofx and y^ to make the system turn about

the axis of ,; the finite integral 2..<^fa^.?^dt v

is therefore the sum of the moments of all the finite

forces of the bodies of the system, which are exerted

to make it turn about the same axis ; this sum is there-

fore constant. It is nothing in the state ofequilibrium ;

we have here therefore, the same difference between

these two states, but relatively with respect to the sum

of the forces parallel to any axis whatever. In the law

of nature this property indicates, that the sum of the

areas described about a fixed point by the projections

of the radii vectores of the bodies, is always the same

in equal times ; but the areas described are constant,

only in the law of nature,
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If we differentiate, with respect to the characteristic

,
the function 2.fm.q>(v).ds ; we shall have

but we have

ftfc^^l*^!^?*-!. 5
*
AW.+. d.

ds v dt dt

we shall therefore have from integrating by parts,

.=Ky.
\ ,.^,,.+|.

If the extreme points of the curves described by the

bodies of the system are supposed to be fixed, the terra

without the sign / will disappear from this equation;

we shall therefore have in consequence of the equa-

tion (S) 9

but the equation (T) differentiated with respect to

gives

we have therefore

This equation answers to the principle of the least

action in the law of nature, m.^(v) is the entire force

of the body ?w, therefore the principle comes to this,

that the sum of the integrals of the finite forces of the

bodies of the system, multiplied respectively by the

elements of their directions is a minimum: presented
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in this manner it answers to all the mathematical laws

possible between the force and the velocity. In the

state of equilibrium, the sum of the forces multiplied

by the elements of their directions is nothing in conse-

quence of the principle of virtual velocities; what

therefore distinguishes in this respect, the state of

equilibrium from that of motion, is, that the same

differential function which is nothing in the case of

equilibrium, on being integrated gives a minimum in

that of motion.
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CHAP. VII.

Of the motions of a solid body ofanyfgure whatever.

25. THE differential equations of the motions of

translation and rotation of a solid body, may be easily

deduced from those which we have given in Chap. V ;

but their importance in the theorj of the system of the

world, induces us to devclope them to a greater extent.

Let us suppose a solid body, all the parts of which

are solicited by any forces whatever. Let x^ y, and *

be the orthogonal co-ordinates of its centre of gravity ;

x-\-x', y-\-y'i and z -f- *' the co-ordinates of any
molecule dm of the body, then x'^ y', and z

f
will be

the co-ordinates of this molecule with respect to the

centre of gravity of the body. Let moreover P, Q9

and R be the forces which solicit the molecule parallel

to the axes of xy y, and z. The forces destroyed at

each instant in the molecule dm parallel to
these^axes

will be by No. 18, if the element dt of the time is sup-

posed constant,
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It follows therefore that all the molecules acted upon

by similar forces should mutually cause an equilibrium.

We have seen at No. 15, that for this purpose it is

necessary that the sum of the forces parallel to the

same axis should be nothing, which gives the three

following equations ;

the letter S being here a sign of integration relative to

the molecule dm, which ought to be extended to the

whole mass of the body. The variables x, y, and %

are the same for all the molecules, we may therefore

suppose them independent of the sign S j thus denoting

the mass of the body by m, we shall have

, dzx , d*x ^ d*
S.-.dm=m.-; S.

...
We have moreover by the nature of the centre of

gravity

S.x'.dm=0 ; S.y'.dmQ ; S.z'.dm=0 ;

which equations give

we shall therefore obtain



LAPLACF/8 MECHANICS. 199

,72 r >

m.^-S.Pdm;

d2z

these three equations determine the motion of the centre

of gravity of a body, and answer to the equations of

No. 20, relative to the centre of gravity of a system of

bodiesl*

We have seen at No. 15, that for the equilibrium

of a solid body, the sum of the forces parallel to the

axis of x multiplied respectively by their distances

from the axis of z
9
minus the sum of the forces parallel

to the axis ofy multiplied by their distances from the

axis of %
9

is equal to nothing ; we shall therefore have

* As the equations (A) do not contain the co-ordinates

a/, x"
9
&c. of the different molecules of the body, they are

independent of them and only indicate the motion of the

centre of gravity of the body. This motion is not influ-

enced by the mutual actions of the molecules upon each

other, but solely by the accelerating forces which solicit

them.

It is evident from the above that the centre of gravity of

any free body whatever, like that of a system, has always
the same motion as if this body were all concentrated into

one point and acted upon by the same accelerating forces as

the parts of the body were, when in their natural state.

This accords with what has been given at No, 20.
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cs.

S.{(x+x').Q(y+y').P}.dm ; (I)
but we have

and in like manner

S. (QxPy).dm=x. S. Qdmy. S.Pdm ;

lastly we have

d*x.S.y'dm-\-x.S.d*y'.dmy.S.d*x'.dm',
and by the nature of the centre of gravity each of the

terras of the second member of this equation is nothing;
the equation (J) will therefore become in consequence
of the equations (A),

S * (--^- -).dm=S.(Qx'-Py').dm ;

by integrating this equation with respect to the time f?

we shall have

S- .dmS.f( Qx'-Py').dt.dm ;

the sign /of integration being relative to the time t.

From the above it is easy to conclude, that if we
make

S.f(Qx'Py').dt.dm=N;
S.f(Rx'Pz') . dt.dm=N1

;

we shall have the three following equationi
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these three equations contain the principle of the pre-

servation of areas; they arc sufficient for determining

the motion of the rotation of a body about its centre of

gravity* ; united to the equations (A) they completely

determine the motions of the translation and of the

rotation of a body.

If the body be forced to turn about a fixed point ; it

results from No. 15, that the equations (R) are suffi-

cient for this purpose; but it is then necessary to fix

the origin of the co-ordinates x'^y'^ and z
1 at this point.

26. Let us particularly consider these equations and

suppose the origin fixed at any point whatever, differ-

ent or not from the centre of gravity. Let us refer the

position of each molecule to three axes perpendicular

to each other and fixed in the body, but moveable in

space. Let be the inclination of the plane formed by
the two first axes upon the plane of x and y ; let

<p
be

the angle formed by the line of intersection of these

two planes and the first axis ; lastly, let ^ be the cotn-

* As the equations (B) do not contain the co-ordinates of

the centre of gravity of the system, they only shew the

different positions of the body with respect to three axes

which have their origin at that centre, consequently the

motion of rotation which the equations (B) determine, is

the same as if the centre of gravity were at rest.

A body acted upon by accelerating forces may therefore

have two motions
;
one that of translation, the same as if

the body were concentrated into one point at its centre of

gravity and acted upon by all the forces parallel to their

directions, and the other that of rotation about the centre
ef gravity the same as if this point wer fixed.
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plement of the angle which the projection of the third

axis upon the plane ofx and y makes with the axis of #.

We will name these three new axes principal axes, and

we shall denote by x"> ya
> and z" fhe three co-ordinates

of the molecule dm referred to these axes ; then, by
No, 21, the following equations will have place,

cos.-^.sin.tpj-J-^.sin.

(y==# //

.{cos.9.cos.\l'.sin.<p sin. -4/. cos. <p}

-\-y"*{ cos . 0. cos . \j/ cos . <p-(-sin .^ . sin .
<p }-\-z" . sin .

z
r=z".cos.Q y.sin.Q.c

By means of these equations we shall be enabled to

develope the first members of the equations (R) in

functions of 0, -4/?
and cp,

and of their differentials.

But we may considerably simplify the calculations, by

observing that the position of the three principal axes

depends upon three constant quantities, which can

always be determined so as to satisfy the three equations

Suppose then

S. ry*+"*).dm=A ; S. (aP+z**) .dm B ;

and for abridgment let

The equations (B) will, after all the reductions, be

changed into the three following,
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-2V,-

cos. 4'.{^gf

.cos.0.sin.<p-|- Br. cos. 9. cos. (p 4"

Cp.sin.8}

cos.-4/.{jBr.sin.(p Aq.cos.q*}

sin. -vK{^. cos. 0. sin. <>-[- JBr.cos.Q.cos.p

these three equations give by differentiating them and

supposing ^=0 after the differentiations, which is

equivalent to taking the axis of the jr's indefinitely

near to the line of intersection of the plane of x1 and y*
with that of x11 and y 1

^

^.cos.Q.fjBr.cos.^-j-^^'Sin.^J-j-sin.d.^.f JBr.cos.<p-[-

Aq.sin>q>)d.(Cp.cos.Q)= dN;

d^.(Br.sin.<p Aq.cos.Q) dQ.sm.Q.( Br.cos,Q-\-Aq.

sin.<p)-\-cos.Q.d.(Br.cos.q>-\-Aq.sin.q>) -|- d.(Cp.s'm.Q)

= dN1

;

d.(Br.s'm.q> ^.cos.<p.J d^,. cos. Q.(Br>c

If we make

Cp=p'; Aq=q>; Br=r' ;

these three differential equations will give the following

n_ n

dr'+
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these equations are very convenient for determining the

motion of rotation of a body when it turns very nearly
about one of its principal axes, which is the case of the

celestial bodies.

27. The three principal axes to \vhich we have re-

ferred the angles 0, 4/, and (p, deserve particular atten-

tion. Let us proceed to determine their position in

any solid whatever.

The values of #', y, anclofV the preceding number,

give by No. 21, the following equations,

sn.(p;

y/:=r/

.(''cos.0.sin.4,.cos.p cos. 4,. sin

cos.p;

^z.r'.sin.Q.si

From which may be obtained

Suppose

then

*.Q.S.xs
a.dm sin.tp, S.yz

tt.dm= (a*

4/ A. sin.
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By equalling to nothing the second members of these

two equations, we shall have

~Y 2 6 2
;.sin.4,.cos.4/4-/.(cos.

2
v}/ sin.

t ^
*

but we have

by equalling these values of \ fang.20, and substituting

in the last instead of tang. its preceding value in ^,

and then making for abridgment tang.^n^w, we shall

obtain, after all the reductions, the following equation

of the third degree ;

0=(gu+h) . (hu g)
2

As this equation has at least one real root, it is evidently

always possible to render equal to nothing at the same

time, the two quantities

cos.
(p. S.x"z".dm sin.Q.S.y

r/z f/ ,dm ';

and consequently the sum of their squares, (S x!l

z".dm)

-\-(S.y"z
ll

.dm)*) which requires that we should have

separately

S.a?V,dfw=0 ; S.y
llz'i.dm=Q.

The value of u gives that of the angle 4,, and conse-

quently that of the tang. 0, and of the angle 9. It is

yet required to determine the angle p, which may be

done by means of the condition S.zny*.&iiK~&9 which

remains to be fulfilled. For this purpose it may be

observed, that if we substitute in S-^'/.dm for x" and

i/
1 their preceding values, that function will be changed

into the form, /f.sin.9(p-|~L-cos.2^, H and L being:
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functiqns of the angles and 4/, and of the constant

quantities a
2

,
& 2

,
c
2

, /, g, h^; by equalling this ex-

pression to nothing, we shall have

The three axes determined by means of the preceding

values of 0, 4,, and tp, satisfy the th/ee equations

=Q ;S.z
f/z.dm=.Q ; S.V'.feziiOt ;

* If F be supposed equal to tf'cos.-^ ^'sin.4/ and 6r to

a/cos.0.sin.4/-f ^/'cos.Q.cos.-v}/ s'sin.d, then .y//- R
G.sin.^ and^G. cos.p F.sin.^; consequently

therefore

S.x"ii'dm sin. <

If the second member of this equation be equalled to nothing,
as 2sin.9.cos.p sin.2p and cos, 2

<p sin. 2
9cos.2p, we

shall have

sin ^O
If H=S.(G*F*).dm, L=:2.S.FG.dm and - -zrtan.

cos. 2<p

2<p, by substitution, the above equation may be changed

into the following
L

t These calculations which would be found very tedious

in practice are much facilitated by the knowledge of one of

the principal axes of rotation. Thus for instance, let the

position of the axis x" be known in the body, as the situa-

tion of (he three rectangular axes #', y, andz' are arbitrary,

at" may be supposed to coincide with x1 which will cause the

angles <p and %]/ and consequently their sines to vanish, their
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The equation of the third degree in u seems to indicate

three systems of principal axes similar to the preceding ;

but it ought to be observed, that u is the tangent of the

angle formed by the axis of x1 and the intersection of

co-sines will then he equal to unity, also the quantities/

and g will be equal to nothing, as is evident from substituting

in them fory and z' their respective values. The equation

T tang. 2
ca a2.sin. 2

4/ 6 2 .cos. 2
4/ 2/.sin.^.cos.4

2/*'

therefore be transformed into the following tan.20'ji: , 2_ , 2 ,

in which h', c', and b
j

are the respective values of h, c, and

b when x" coincides with d\ It appears from this expres-

sion, as tan.Sfl'rrtang.Sf&'-f-SOj, that the other two axes

must be taken in the plane of y' s', one making the angle

& and the other the angle 0'-f 90 with the axis ofy or the

plane of x" y'.

If VrzO and b'~c' the angle 6 becomes indeterminate,

therefore every line'in the plane ofy z (

passing through the

origin of the axes is a perpendicular axis.

When the bodies are symmetrically formed, the axis of

the figure is always a principal axis and the others may be

found by this rule. Thus for instance in the case of the

ellipsoid which has three unequal conjugate diameters, let

them betaken for the axes of #, #, and z, then the body will

be divided into similar and equal parts by each of the planes of

the co-ordinates ;
therefore each molecule dm above the plane

of x y having the co-ordinates #, y, and z ^vill have another

corresponding and equal one below that plane having x
, y,

and z for its co-ordinates ; consequently the indefinitely

small elements of the integrals S.xz.dm and S.yz.dm corres-

ponding to these molecules will be xz.dm und xz.dm,

yz.dm and yz.dm, therefore the integrals will vanish as
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the plane of xf and y 1 with that of x" and y" ; but it is

evident that it is possible to change into each other the

three axes of x" ofy" and of /y

,
as the three preceding

equations will be always satisfied ; the equation in u

ought therefore equally to determine the tangent of the

angle formed by the axis of x1 and the intersection

of the plane of x1 and y f

} either with the plane of x"

and yn
,
or with the plane of x" and z", or with the

plane ofy 11 and z". Thus the three roots of the equa-

tion in u are real and appertain to the same system of

axes.

It follows from the above that, generally, a solid has

only one system of axes which possess the property

treated upon. These axes have been named the prin-

cipal axes of rotation, by reason of a property that is

peculiar to them, which will be noticed in the course

of this work*.

they may he supposed to consist of an indefinitely great
Mumber of indefinitely small quantities, which from their

contrary signs destroy each other. The integral S.xy.dm

may in a similar manner be proved equal to nothing, con.

aequently the three axes of the ellipsoid are principal axes.
* These axes are called the principal axes of rotation on

account of the property which the body possesses, if not

acted upon by any accelerating force, of always turning round

any one of them, if once put in motion about it in conse-

quence of an initial impulse. This property may be demon-
strated in the following manner.

Suppose a body, not acted upon by any accelerating force,

to turn about a fixed axis in consequence of an impulse which

has been given it. Let one of the three rectangular co,

rdinates to which the molecules of the body are referred,



LAPLACE'S MECHANICS. 09

The sum of the products of each molecule of a body
into the square of its distance from an axis, is called its

moment of inertia with respect to this axis. Thus the

that of z for instance be supposed to pass along this axis,

conceive r to represent the distance of a molecule dm from

it, having its angular velocity, \vhich is common to all (he

points of the body, denoted by . The centrifugal force of

the molecule dm will be represented by rw z
, consequently

the moving force with which the molecule acts upon the fixed

axis in a perpendicular direction to its length is ru*.dm.

The resultant or the two resultants of the whole nun:b?r of

forces which act upon the axis, shew the pressure which it

sustains.

To find this pressure let us suppose that the force ru*.dm

is applied directly to the axis of z where its direction meets

it. The force may be resolved at the point where it acts

upon the axis into two others parallel to the axes of x and y 9

the cosines of the angles that the direction of the force ru z
.

dm makes with the axes x and y are - and -, consequently

the components of this force parallel to these axes are xu z
.

dm and 3/w
z
.t/m, therefore the resultant or sum of all the

components parallel to the axis of x is the integral S.x^.dm
oru2

S.x.dm; this quantify, if M represent the mass of the

body and X the value of x at its centre of gravity, is equal
to u1MX. In like manner the resultant of the forces paral.
lei to the axis of y directed in the plane of yz is

2
AfF, Y

representing the value of y at the centre of gravity of the

body. Let z' and z" denote the distances of these resultants
from the plane of x and y, then by the theory of moments
we shall have the following equations

MXz'S.xz.dm, MYzi=S.yz.dm.
which will give the values of z

1 and z".
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quantities A9 J3, and C are the moments of inertia of

the solid which \ve have considered, with respect to

If zr and z" are equal, the forces uMX and ^

applied at the same point, and may consequently be reduced

to one u z.M\/X2
-}~Y*, which represents the action upon

the fixed axis arising from the centrifugal force of the body.
Let the axis of z be one of three principal axes which have

their origin at the centre of gravity of the body at the distance

a from the origin of z upon that axis ; in this case JTn:0 and

V- 0; let the origin of the co-ordinates be moved without

changing their directions from its first point to the centre of

gravity of the body, then the co-ordinates of dm will be #,

#, and z a. As z is one of the principal axes, we shall

have the following equations.

S.x(z a

S,y(z a

therefore because S.xdmMXQ and

it is evident that S*xz.dm-=Q and S.ys. cfazzzO, consequently

u*S.xz.dm=;Q and u*S.yz.dm~Q. As the resultant u*.MXof
forces directed in the plane of xs

9
and the sum wzS.xz.dm

of their moments are nothing, these forces will be in equi.

librio independent of the fixed axis. The same is evidently

the case with respect to the forces in the plane ofy and z $

therefore in this case the centrifugal forces of the different

molecules of the body do not act upon the axis of rotation

and the same motion would be continued about it s if it were

not fixed.

If the fixed axis z is a principal one of rotation that does

not passothrough the centre of gravity of the body X and Y
will not vanish, but as S.xz.dm and S.yz.dm are equal to

nothing, the distances z' and z11 must consequently be equal

to nothing, therefore the fixed axis will be acted upon by

the force U~~.M\/X
2+*2

applied at the origin of the co-

ordinates 5
if this point be fixed the pressure arising from
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the axes xfl

9 y"9
and z".* Let us name O the mo-

ment of inertia of the same solid with respect to the

the centrifugal force will be destroyed, and if the axis of

rotation were free to move about this point the rotatory

motion with respect to it would still be continued*

It is evident therefore, that if any point in a body be

take^ as a fixed one
;
there will be three axes passing through

it, round which the body would move uniformly without

acting upon them.

If the body were forced to turn about any other axis

passing through that point, the action of the centrifugal

forces upon it would not take place at that point and it

would consequently be displaced. Vide the Mechanique

Philosophique of Prony, a similar proof is also given by
Poisson.
*

Suppose for example that MA (Jig. %) is a parallele-

piped it is required to find its moment of inertia with respect

to the axis MB. Let MG=:a
9 ME=b, and MB=.c and

suppose the axes of the co-ordinates #, y, and z to be taken

from their origin at M in the respective directions of these

lines, then if the uniform density of the parallelepiped is

represented by f and dx dy dz is the volume of a molecule

of the body, its inertia will be denoted by the integral SSS.

(x*+y*)dxdyds t This quantity when integrated with re-

spect to z
9
from szzrO to sure, gives

This expression when integrated with respect to y 9
from

b
9 becomes

from which by integrating with respect to x
9
from #zz:0 to

tfzzfl the result

(a*b

ab*

T+T
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axis of 2', and we shall find by means of the values of

x1 and of i/ of the preceding number

may be obtained, which is the moment of inertia of the

parallelepiped MA with respect to the axis MB.
,
The mo-

ments with respect to the other axes may be obtained by

properly changing amongst themselves the letters a, 6, and

c; let JVf f.a&c, then the moments with respect to the

three axes MG, ME, and MB will be

yfft'
+ cO, ^rH-c'>>,

~
f

The moments of inertia of an homogeneous ellipsoid with

respect to the three principal diameters, may be readily

found from the general equation to its surface

a26 22 2+ a*c z
y* -f 6

2c2#2:ira2& 2cz
,

a, 6, and c representing the lengths of the three rectangular

semi-diameters, which are respectively in the directions of

the three co-ordinates #, #, and z. The inertia with re-

spect to the axis of z is

t> representing the density of the body.

This expression when integrated with respect to the entire

ellipsoid gives

.abctvjtf+b*)
1 o

it denoting the ratio of the circumference to the diameter of

a circle. By changing the letters a and c into each other

the moment of inertia

McFtj&W)
15

will be obtained with respect to the axis of x. In like man.

ner by changing a and b into each other the moment of

inertia
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The quantifies sin.
2
0.sin.*<p, sin

2
0.cos.

2

;p,
and cos.

a
d

are the squares of the cosines of the angles which

the axes of xn
, y", and z" make with the axis of z

1

from which it follows in general, that if we multiply

the moment of inertia relative to each principal axis of

rotation, by the square of the cosine of the angle that

it makes with any axis whatever, the sum of these three

products will be the moment of inertia of the solid rela-

tive to this last axis.

The quantity O is less than the greatest and greater

ill be obtained with respect to the axis of y. The content

4<7T

of the ellipsoid is represented by Mbc, and its mass M by

.abc: by substitution therefore the following will be
3

the moments of inertia of the ellipsoid with respect to the

axes x, y, and z,

The greatest moment of inertia is about the shortest and

the least about the longest axis.

In the case of the spheroid bc and the moments with

M
respect to the axes of x and y are .b 2 and (a

i
-\-b

1
).

O O

In the case of the sphere azz&mc, and the moments of

inertia with respect to any axis passing through its centre is

STT

-.&.'.
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than the least of the three quantities A, B, and C* ;

the greatest and the least moments of inertia therefore

appertain to the principal axest.

*
Suppose A to be the greatest and C the least of the

quantities A, B, and C, and a, /3, and y to denote the

three angles which the axis z' respectively makes with the

axes x !/

9 y") and z ff

9
then by observing that cos. 2

a-j~cos.
2
j3

cos. 2
yzz:l, notes No. 2, the preceding equation may be

made to assume the following forms,

which shew that G is less than the greatest and greater

than the least of the three quantities A, B, and C.

t A method of finding one of the principal axes of rotation

of a body may be derived from the properties which two of

the axes possess, of having the moments of inertia with re-

spect to one of them a maximum and to the other a minimum.

Thus let x" be an axis of rotation passing through the origin.

of the co-ordinates which it is required to find, and suppose
it makes the angle Q with the plane x'i/' 9

and that its projec-

tion upon the plane x'y' makes the complement of the angle

4/ with the axis of x1
. Suppose also the axis of y" to be

drawn perpendicular to x 11 in the plane of x' y
1
r

,
and the axis

of z" to be perpendicular to the plane x" y, all the co-

ordinates having the same origin, then the following values

ofx f/

9 y7

,
and rJ1 may be obtained,

Let these values of y" and z" be substituted in the expres-

sion S(y"
2
-}-z"

z)dm which may be denoted by L, then if the

angles Q and 4- are supposed variable we shall find
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Let X, F, and Z be the co-ordinates of the centre

of gravity of the solid referred to the origin of the co-

ordinates, which we shall fix at the point about which

the body is forced to turn, if it be not free ; x' X^
y1 Fand s' Z will be the co-ordinates of the molecule

dm of the body relative to its centre of gravity : ihe

moment of inertia relative to an axis parallel to the axis

of s' and passing through the centre of gravity, will

therefore be

but we hare by the nature of the centre of gravity,

S.x'dm=mX; S.y'dm=mY; the preceding moment

will therefore be reduced to

We shall consequent!}' have the moments of inertia of

a solid relative to the axes which pass by any point

whatever, when these moments shall be known relative

to the axes which pass through the centre of gravity.

It is evident at the same time, that the least of all the

f-V-
\dtj-

r~v~
\<t*)-

If these values be equalled to nothing they will give L
Either a maximum or a minimum : the angles an J > may
then be obtained from them which will shew the position of

the axis #", from which the other two may be readily found.

This method like that of Laplace requires yery tedious cal.

culations.
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moments of inertia has place with respect to one of the

three principal axes which pass through this centre*.

* The moment of inertia with respect to any axis s
f

is

S.(x
fz

-t-y'
2
).dm) but for any other axis parallel to z

1 which

has the lines a and b for the co-ordinates of any one of its

points, this expression becomes

Let r be equal to the distance between the axes or \/az
-\-b

2

then if the axis of 3' passes through the centre of gravity of

the body, as S.x'dm0 and S.y'dm~0, No. 15, the ex.

pression will become

therefore the moment of inertia with respect to an axis

passing through the centre of gravity of a body, is less than

for any other axis, by the square of the distance of the two

axes multiplied into the mass of the body, consequently the

minimum minimorum of the moments of inertia of a body

belongs to one of the principal axes which passes through its

centre of gravity.

To find those points of a body, if there he any, about

which all the moments of inertia are equal.

Let
, by and c denote the co-ordinates of one of these

points, the centre of gravity of the body being taken for the

origin of the co-ordinates which are supposed to be in the

directions of the principal axes passing through it, then a:
,

y b
9
and z c will be the co-ordinates of any molecule

with respect to the point sought ; now from the nature of

the question every straight line passing through this point

must be a principal axis, consequently we have the following

equations

S.(x a)(y b
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If it be supposed that by the nature of the body,

the two moments of inertia A and B are equal, we

shall have

S.(x a)(z c).dm~S.xz.dm aS.z.dm c.S.x.dm-\-ac.

S.dmQ,
S,(yb)(z c),dmS.yz.dm b.S z dm c.S.y.dm+ bc.

S.dmQ;
but S.xy.dm, S.xz.dm, S.yz.dm, S.x.dm, S.y.dm, and

S.z.dm are respectively equal to nothing, therefore the

above are reduced to these

fl^TwrzO, acm~0, bcm~0.
It is evident, that if the point sought exist, as from the

last equations two of the quantities a, 6, and c are equal to

nothing, it must be upon one of the principal axes belonging
to the centre of gravity of the body. Suppose & c 0, then.

a the distance of the point sought from the centre of gravity

is indeterminate and upon the axis of x. The moment of

inertia of this point with respect to the axis of x is A, but

with respect to axes parallel to those of^ and z it is B-\-m
a1 and C'-j-wa

2
. The problem requires that we should have

13 -j- wza
2nrC -f ma* A.

These equations are impossible unless I? (7,
which gives

a_^~g
m '

therefore

"J^c
m

consequently a has two values which, if A be greater than

C, are real and upon the axis of x at equal distances on each

side of the centre of gravity.

It appears from the above that there cannot be any point
in a body about which all the moments of inertia are equal.
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by making 6 equal to a right angle, which will cause

the axis of z' to be perpendicular to that of s /7

,
the

equation will give C=sl. The moments of inertia

relative to all the axes situated in the plane perpedicu-
lar to the axis of z", will be therefore equal to each

other. But it is easy to be assured that, in this case,

we shall have for the system of the axis of 2 /y and of any
two axes perpendicular to it and to each other

for, from denoting by x11 and y" the co-ordinates of a

molecule dm of a body referred to the two principal

axes taken in the plane perpendicular to the axis of z",

with respect to which the moments of inertia are sup-

posed equal, we shall have

S. (x
f

i*+z
fiz
) .dm=S. fy/8+s >iz

) .dm ;

if the quantities A^ B, and C belonging to the centre of

gravity of the body are unequal ;
if one of the three quanti.

ties A, By and C is greater than either of the others, and

the others equal, in this case, there are two points with

respect to which all the moments of inertia are equal upon
the principal axis to which the greatest of the moments A^

J?, and C belongs. If the three moments A, /?, and Care

are equal, the centre of gravity of the body is the only point

about which all the moments of inertia are equal.

For example, ia the oblate spheroid the points are upon

the minor axis of the generating ellipse, at the distance of

the square root of the fifth part of the difference between the

squares of the semi-major and semi.minor axes on each side

from the centre of the spheroid. This last problem was first

solved by M. Binet, and afterwards in a manner similar td

the above by S. D. Poisson.
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or simply S.z*.dm=S.y
ll*.dm ;

but by naming s the

angle which the axis of x 1 makes with the axis of xf/

,

we have

.r'uz^.cos.e-j-^.sin.e ;

consequently

dm . s in . s . cos . enrzO .

We shall find in like manner S.x's v.dm=0 ; S.y'z"dm

-0
;

all the axes perpendicular to that of z" are there-

fore principal axes, and in this case the solid has an

infinite number of principal axes.

If at the same time ^=B=C', we shall have gen-

erally C'=A ; that is to say, all the moments of inertia

of the solid are equal ; but then we have generally

S.x'i/'.dm=0; S.z'z'.dm=Q; S.y*'.di=aO;
whatever may be the position of the plane ofx1

andy,
so that all the axes are principal axes. This is the

case of the sphere : we shall find in the course of the

Mechanique Celeste that this property belongs to an

infinite number of other solids of which the general

equation will be given.

28. The quantities p, q, and r which we have intro-

duced into the equations (C) of No. 26, have this

remarkable property, that they determine the position

of the real and instantaneous axis of rotation of a body
with respect to the principal axes. In fact, we have

relative to the points situated in the axis of rotation

dx'Q, dy'=Q, and cfc' 0; by differentiating the

values of x'
9 y'^ and z

j of No. 26, and making the sine

4cmO after the differentiation, which may be done,
because we are able to fix at will the position of the

axis of x1

upon the plane of x1 and y, we shall have
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oF.<p} -f-

os.0.hin.<p e$.sin.0.cos.<p}

+s".<?0.cos.fi= ;

cos. 0. cos.
<p. <$p.sin.0.sin.(p} s/'.f/Q.si

If we multiply the first of these equations by sin.<p,

the second by cos. 0. cos. <>, and the third by sin.0.

cos,<p ; we shall have from adding them together,

=pxfl

qz".

If we multiply the first of the same equations by cos.<>,

the second by cos. 0.sin. <p, and the third by sin.O.

sin.(p ; we shall have from adding them together,

JLastly, if we multiply the second of the same equations

by sin. 0, and the third by cos.Q, we shall have from

adding them together,

Qz=zqy
fl rx".

This last equation evidently results from the two pre-

ceding ones ; thus the three equations dx'=.0, dy'=.0,

and dz'=iO are reduced to these two equations which

belong to a right line forming with the axes ofxf/

9 yh

',

and z r/

, angles which have for their cosines

r p *

* Let the right Hue be represented by
then by letting fall a perpendicular from the end of it upon

the axis of x", we shall have by trigonometry \/x"
z
-+y

l/2>

-f z"*

x
: afl : : rad. (1) : _= or the cosine of the angle



LAPLACE'S MECHANICS.

This right line is therefore at rest and forms the real

axis of rotation of the body.
In order (o have the velocity of rotation of the body,

let us consider that point in the axis of '7 which is a

a distance equal to unity from the origin of the co-

ordinates. We shall have its v iociti^s parallel to the

axes of x1

, y', and s', by making z n=fi9 ?/
a=Q 9 and

%"-=l in the
} receding expressions of cfo*', dy' 9

and dz'
9

and dividing them by dt ; which gives lor these partial

velocities

the whole velocity of the point is therefore -- or vV-j-r
z

. If we divide this velocity by the

distance of the point from the instantaneous axis of

rotation, we shall have the angular velocity of rotation

of the body; but this distance is evidently equal to the

sine of the angle which the real axis of rotation makes

with the axis of z"
9

the cosine of which angle is

which the line makes with the axis of x !l

; by substituting

rx'1 px"
for va and zf/ their respective values and , this ex-o

pression becomes / x" z .r 2 x ffz

p*x"
z or 1//>

2
-f ?

3 + r2 .

v "ir^^r
The cosines of the other angles may be found in a similar

manner.
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nave 1/ a2--rz for
4/ a_L allr? we sa

the angular velocity of rotation*.

It appears from the above, that whatever may be

the movement of rotation of a body, either about a fixed

point, or one considered as such ;
this movement can

only be regarded as one of rotation about an axis fixed

during one instant, but which may vary from one in-

stant to another.

The position of this axis with respect to the three

principal axes and the angular velocity of rotation,

depend upon the variables p, q )
and r; the deiermin-

* To find the angular velocity about the immoveable axis

of rotation ;
from the distance equal to unity upon Ihe axis

of za let fall a perpendicular upon the axis of rotation ; the

perpendicular will represent the sine of the angle which

this axis makes with z 11

,
and is consequently equal to

: the angular Telo.

city about the axis of rotation at a distance represented by

nity, may therefore be foand by (he following proportion

If the quantities p, gr,
and r are constant the axis of rotation

will remain fixed in the body, the angular velocity will also

be invariable ;
but the converse of this is not equally true,

for the axis of rotation may change its position in the body
and the angular velocity remain the same, that is, the quan.

tity V fP + cf+ r* may continue constant although p } <jr,

and r vary.
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ation of which is very important in these researches,

and which by expressing quantities independent of the

situation of the plane of x1 and y' 9
are themselves in-

dependent of this situation.

29. Let us determine these variables in functions of

the time, in the case in which the body is not solicited

by any exterior forces. For this purpose let the equa-

tions (D) be resumed of No. 26, containing the varia-

bles p') q', and r' which are in a constant ratio to the

preceding. The differentials rfZV, dN' 9
and dN" are

in this case nothing, and these equations give by being

added together after they have been respectively multi-

plied by p', <?',
and r'

Q=p f

dp
f+q f

dq
f+rf

dr
r

,

which becomes from integration

k being a constant quantity.

If the equations (D) are multiplied respectively

AB*p
r

, BC.q', SindAC.r', and afterwards added to-

gether, they will give by integrating their sum

H being a constant quantity ; this equation contains

the principle of the preservation of living forces. From
these two integrals the following equations may be

obtained,

,2_AC.k*-H*+ A.(B-C).p'* .

C.(A-B)

12
-ff* BC.k* B.(A C).p'~ .

C.(A-B)
thus q' and r 1 will be known in functions of the time t,

when p' shall have been determined : but the first of

the equations (D) gives

AB.dp>
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which, by substituting the values of q' and r', becomes

Aj^dp^ ^~V AC. k z-llA\ir^'C' ll z BC.k*^K

an equation that is only inferrable in one of the three

following cases, B=A, BC, or A=*.

* In the cases in which this equation can be integrated it

may be made to assume ihe following forms, in which a and

b are substituted for the constant quantities.

a z
clp'

First. If A=B, <//&. - and * b. (circular arc

having a for radius and jV for tangent)-|-const.

dp'
Second. If ^ C, dtb.,===== and ^^z&. hyp. log.

2
-f;7*7-f const.

IfU C, dfc:&, /=;^T: and '=* (circularVa /'*

re having for radius and|>' for sine) -f const.

todpf
-Fourth. liAC.k*H*) dtb ~^-==== and t=b. hyp.

BC.k*, dtb.

Hh*
,

log -------r^rkrr^-- ~! Const/
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The determination of the three quantities p', q
r

,
and

r', requires three constant quantities, //a
, % and that

which is introduced by the integration of the preceding

equation. But these quantities only give the position

of the instantaneous axis of rotation of the body upon
its surface, or relative to the three principal axes and

its angular velocity of rotation. To have the real

movement ofthe body about a fixed point, it is necessary

also to know the position of the principal axes in space ;

this should introduce three new constant quantities rela-

tive to the primitive position of these axes, and requires

three new integrals, which when joined to the pre-

ceding will give the complete solution of the problem.

The equations (C) of No. 26 contain the three constant

quantities N, N r

,
and N"; but they are not entirely

distinct from the constant quantities H and k. In fact,

if we add together the squares of the first members of

the equations (C) 9
we shall have

which gives k*=N*+N'*+Na
*.

The constant quantities N9 N'
9 and JV", answer to

the constant quantities c, e', and CH of No. 21, and the

function |JvV
2

+<?
/2+ expresses the sum ofthe areas

described during the time t by the projections of each

molecule of the body upon the plane relative to which

this sum is a maximum. N' and N" are nothing rela-

tive to this plane ; by therefore equalling to nothing

their values found in No. 26, we shall have

sin.^ Aq.cos.Q ;

from vfhich may be obtained
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-
sin. 0. sin.0= .--- _:

;'

sin 0.cos.<p= ,==.--

By means of these equations, \ve shall know the values

ol & and
<p in functions of the time relative to the fixed

* If from the centre of the co-ordinates a perpendicular

be erected to the invariable plane, and a, ,
and y denote

the respective angles which it makes with the co-ordinates

*/7

, y, and z fl

,
then it may be readily proved, No. 21 notes,

that cos.azz sin.0.sin.p, cos./Srr sin. 0. cos.9, and cos.y

:z:cos.d, consequently we have the following equations

cos -0=./^T^T^'

COS.yn: ,===

The position of the invariable plane with respect to three

axes fixed in space may be found in the following manner.

Let O (Jig. 19) represent the centre of the co-ordinates or

the point about which the body turns, Ox ff

9 Oy", and Oza

the three principal axes to which the co-ordinates x", y;
,

and z f/ are referred, Om the perpendicular to the invariable

plane, and Ox one of the three rectangular fixed axes be.

longing *o a:, y 9
and z to which the ordinates x are referred.

From any point a? in the axis Ox let the right line xm be

drawn cutting the line Om at z, then in the triangle xmO

The co-ordinates of the poiat x with respect to the axes of



I/APLACE'S MECHANICS. 27

plane that we have considered. It only remains to find

the angle 4*, which the intersection of this plane and

that of the two principal axes makes with the axis of #'>

which requires a new integration.

The values of q and r of No. ^6 give

from which may be obtained

xa , yH
)
and z ff are xO.cos.xOx", xO.co^.xOy'^ and xO cos.

xO^" and those of m to the same co-ordinals are mO cos.

mOx", mO.cos.mOy", and mO.cos.mOz", we therefore have,

page 8,

xm z
~(xO.cos.xOx

fl mO. cos.mOx")*-{-(: O cos.xOj/
11 m

From these two values of xm 2 we shall find, by making the

co-efficients of 0#a
,
Om* and Ox.Om in the equations equal

to each other, that those of Ox.Om give

cos.mOtf cos.tfCXc^.cos.wOji/7 -f- cos. trCy/

.cos.mOy
/
-f cos.

xOz".cos.mOz". In a similar manner it may be proved that

cos.m0^rzcos.3/O^
//

.cos.mOa?''-f-cos.<yOy/

.cos.wOy
/

-f- cos.

gOz".cos.mOz", and cos.mOz cos.sC^.cos-mO^-f-cos.sO

y".cos.mOy
fl + cos.zOz f/.cos.mOz f/

. (See page 111). We
therefore evidently have the following equations

p'.cos.xOz"-)- o'.cos xOxH+ r'.cos.zOu11

cos.mOx =.------ ------ZL

Vp'
i + q

i
+r'*

p'.cos.yOz"-}- o'.cos.wO^-f r'cos.vOy'*
eos .

-- - ^

y.cos.202
/7
-f T'.cos.sOa/'

os.mw -
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but by what precedes

c
we shall therefore have

If we substitute instead of dt its value found above
; wte

shall have the value of %}/ in a function ofp
f

; the three

angles 0, <p ?
and %]/ will thus be determined in functions

of the variables p', q', and r', which arc themselves

determined in functions of the time t. We shall there-

fore know at any instant whatever the values of these

angles with respect to the plane of x1 andy , which we
have considered ; and it will be easy by the formulas of

spherical trigonometry to find the values of the same

angles relative to any other plane ; this will introduce

two new constant quantities, which united to the four

preceding ones will form the six constant quantities,

that ought to give the complete solution of the problem
about which we have treated. But it is evident that

the consideration of the plane above mentioned simpli-

fies this problem.

The position of the three principal axes upon the

surface of the body being supposed to be known ; if at

any instant whatever we are acquainted with the posi-

tion of the real axis of rotation upon this surface, and

the angular velocity of rotation ; we shall have at this

instant the values of p, <?,
and r, because these values

divided by the angular velocity of rotation express the

cosines ef the angles which the real axis of rotation

forms with the three principal axes : we shall therefore

have the values of p', #', and r' ; but these last values

are proportional to the sines of the angles which the
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three principal axes form with the plane

relative to which the sum of the areas of the projections

of the molecules of the body multiplied respectively by
these molecules, is a maximum ; we shall therefore be

able to determine at all times the intersection of the sur-

face of the body by this invariable plane, and conse-

quently to find the position of this plane by the actual

conditions of the movement of the body.
Let us suppose that the movement of rotation of a

body is owing to an initial impulse, which does not

pass through its centre of gravity. It results from what

Las been demonstrated in numbers 20 and 22, that the

centre of gravity will take the same motion as- if this

impulse was immediately applied to it, and that the

body will take the same movement of rotation about

this centre as if it were immoveable. The sum of the

areas described about this point by the radius vector of

each molecule projected upon a fixed plane and mul-

tiplied respectively by these molecules, will be pro-

portional to the moment of the initial force projected

upon the same plane, but this moment is the greatest

relative to the plane which passes by its direction and

by the centre of gravity ; that plant; is therefore the

invariable one. If the distance of the initial impulse

from the centre of gravity is denoted by/, and the ve-

locity which it impresses upon this point by v; m
representing the mass of the body, mfv will be the

moment of this impulse, which being multiplied by |

will give a product equal to the sum of the areas de-

scribed during the time t; but this sum by what pre-

cedes is f.vV 2
-|-<?'

2
-f-^

/z
;
we have therefore

If we had known at the commence ruent of the move-



ment, the position of tbe principal axes relative to the

invariable plane, or the angles B and p; we should also

have known at this commencement, the values of p'y

q', and r'
',
and consequently those of/7, q, and r; we

shall therefore have at any instant whatever the value*

of these same quantities*.

* The diagram (Jig. 20J may serve to assist the learner

in the readier understanding of this number.

Let the body be supposed to be put in motion about the

point O situated upon the principal axis z", by an impulse

acting upon the point B of the surface in the direction of the

line AB. Let MBM' be a section of the body made by a

plane passing by the point O and the right line AB : this

plane is the invariable one
;

let Om be a perpendicular to

it. If we know the section MBM' of the body at the be-

ginning of the motion, we shall know the angles which its

perpendicular makes with the three principal axes. Let Oxn
y

Oy, and Ozf/

represent the three principal axes and OI the

instantaneous axis of rotation of the body, then at the be.

ginning of the motion

cos./O*= -=

cos.XV= , .

V>2-H2
-f-r

a

Let MOM' be the section of the planes MBM1 and xy
Otf' ;

then one of the constant quantities which belong to the values

of t and \J/ in functions ofp will depend upon the time when
t commenced, and the other upon the line taken arbitrarily

in the plane MBM' from which the angle ^ commenced.
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This theory may serve to explain the two motions of

the rotation and revolution of the planets, by one

sole initial impulse. Let us suppose that a planet is

an homogeneous sphere having a radius 7?, and that

it turns about the sun with an angular yelocity U:_

In the case of the rotatory movement of a solid body not

acted upon by any accelerating forces we evidently have,

(see page 107
5 )

dxzdu yd<p,

If the three equations (Z) No. '21, are respectively multi-

(/A du d-^/

plied by -j- , ,
and

,
which are made to pass under the

$ign 2, and added together, when , -~-, and -^ are
at at at

substituted for their values, they will give^ +^+^ ^ ^ ^
at* at dt^ <U

but as the equation (Q) No. 19, when ^zz^), givet

we shall have

In this equation c, c', and c/x

represent the initial forces of

impulsion, and C a constant quantity which is
necessarily

positive.

If a.cos.a, a.cos.jS, and a.cos.y are respectively substi-

dQ
*utd for cU

) d, and c, (se notes No. 21) and -T-.COS.A
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r being imagined to denote Us distance from the sun ;

we shall then have v=rUi moreover if we suppose
that the planet moves in consequence of an initial im-

pulse, the direction of which took place at a distance/

dQ d9 d-^ du dq>

.cos./*,, and .cos.v for ? > and (see notes

page 108) the above equation will be changed into the

following,

dQ ( \ 2C
I COS.a COS.A-f COS.j3.CO5/x-f COS.y CO C v I .

In this equation , /3, and y are the ang'es which the per.

pendicular axis to the invariable plane makes with the fixed

axes of .r, ^, and z; and X, />/,,
and v are the angles which

the instantaneous axis of the composed rotation makes with

dQ
the same axes,

-
being the velocity of rotation. Let a- re-

present the angle which the instantaneous axis of rotation

makes with the perpendicular axis to the invariable plane,

then, (notes page 227)

cos.<m:cos.a.cos.X-J-cos./3,cos./x,4" C()S 'y cos ' v I

dQ <2C 2C
consequently -r-.cos.od: ? being a constant quantity

dt a a

which depends upon the initial movement of the hody. We
therefore have a ratio, independent of the form of the hody.

between the real velocity of rotation at each-insfant and the

position of the axis of rotation relative to the invariable

plane. This curious property was discovered by Lagrange.
If the plane of xy be taken by the centre of the body and

the right line in the direction of which the impulse is given,

the con'stant quantities c' and c" will vanish, and the general

r/<p

equation found above will be reduced to c. zz2C; which

shews that the velocity of rotation with respect to the axis

of z
?
that is parallel to the plane of the impulse, is invariable.



LAPLACE'S MECHANICS. 233

from its centre, it is evident that it will revolve about

an axis perpendicular to the invariable plane ; by there-

fore considering this axis as the third principal axis,

we shall have $=.0, and consequently ^'zzzO, r'=0;
we shall therefore have p'^^mfv or Cp=.mfrU,

2
But is well known that in the sphere we have C=-

o

mR*
9 consequently

f^-T'V '

which gives the distance /of the direction of the initial

impulse from the centre of the planet, and answers to

the relation observed between the angular velocity p of

rotation, and the angular velocity U of revolution

about the sun. Relative to the earth we have 77=
T>

.166,25638; the parallax of the sun gives = 0,0000

42665 and consequently f=.--. J?, very nearly.

As the planets are not homogeneous, they may be

considered as formed of spherical and concentricai la

minae of unequal densities. Let g represent the density

of one of these lamina? ofwhich the radius is jR, being

a function of R; we shall then have

C~

* In order to find the value of C in the case where the

density p of each spherical lamina varies as some function of

its radius, let us suppose (Jig. <ll) that ACBD la the section

**
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m being the entire mass of the planet, and the integrals

taken from .#=0, to its value at the surface ; we shall

therefore have

If, as it is natural to suppose, the laminae be densest

f /?* // 7?

nearest the centre, /'
'

in will be less than %R* ; the
j,R*.dK

value of / will therefore be less than in the case of

homogeneity.

of a sphere made by a plane passing through its centre O and

axis of rotation CD, let the radius QA be drawn perpen.
dicular to CD or axis of z

9
and RS parallel to it or cutting

the circumference of the circle JBCD in R and S ; draw

the radius OR meeting the line SR at R, suppose ORR 9

OPV'x*+y
2=u, then PR~V~R* w2

,
and ifp 3.14159,

&c. the surface of the cylinder generated by the revolution

of SR about CD is 4puRt u z
9
therefore

is the differential of the solid generated by the revolution of

the plane CRSD about CD, consequently 4pfu*du\/J&Iu*
is the integral of that solid, when it has each of its molecules

multiplied into the square of its distance from the axis CD ;

this integral may be readily found by supposing R* u 2 2

or u2~Rz TO
2
,
then M^zzU4 SK^+^S consequently

+ w*d& and 4ptt
JdttV^a~**= 4p.( Jfc*

)
which by integration becomes 4p.( R 2w*

when u~Q this integral should vanish but

R5

az^U in this case 4p.( ?R 5^ --f-Cor, zzO, there-
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30. Let us now determine the oscillations of a body in

the case in which it turns very nearly about the third

principal axis. It is possible to deduce them from the

integral in the preceding number, but it is simpler to

obtain them directly from the differential equations

(D) of No. 26. The body not being solicited by any

forces, these equations will become by substituting in

the places of p', q', and r' their values Cp, Aq> and J3r,

Si_ TJ

dq -J
----.rp.dt=0 ;

The solid being supposed to turn very nearly about

fore, as when wzzjR, zs:0 the ahove integral for the sphere

whose radius K becomes -&pR s
. If R is supposed to be

yariable in this last expression, its differential will be -fp-R
4

<//?, which is the value of an indefinitely small lamina of a

sphere at the distance R from the centre, which has each of

its molecules multiplied into the square of its distance from

an axis passing through that centre; if p=:f.(R) represent
the density of the lamina, then ^pf>R*dR will denote the

number of its molecules each multiplied into the square of

its distance from the axis, therefore C=z%pfpR*dR. Now
the mass m of the sphere is equal to 4pf?R

2

dR, therefore

the value ofp is .j, which by substitution gives

3 *fpR*.dK
*
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third principal axis, q and r are very small quantities*,

the squares and (he products of which may be neglected:

this gives dp=.Q, and consequently p a constant quan-

tity. If in the two other equations we suppose

we shall hav6

D _p ' AB V B.(C-B)'

M and y being two constant quantities. The angular

velocity of rotation will be ^p*+ q*-\-r
2
9
or simply p y

by neglecting the squares of q and r ; this velocity will

* If the angle lOz" (Jig. 20) is very small the angles lOx"

and /Oy will be very nearly right angles, therefore their

q r
cosines =.-- and .---=. and consequently'

the quantities q and r will be very small.

+ By substituting M.sin.fwf-j-y) for q and jl/'.cos.fw*

-f y) for r in these equations, they will be changed into the

following,
/"_ TJ

M.cos.(nt-\-y)ndt+ .M'.cos.A
A_Q

M'.sin.(nt + 7)ndt-]-- .M.sin.

Consequently

M'n -f M.

from which n=py ^- and Jlf= .

~~A) m |je reac(iiy obtained.

B(CB)
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therefore be very nearly constant. Lastly, the sine of

the angle formed by the real axis of rotation and by

the third principal axis will be ^
...

P

If at the origin of the movement we have q-=:0 and

and r Q
?
that is to say, if the real axis of rotation co-

incides at this instant with the third principal axis, we

shall have M=D and M'-=$ ; q and r will be there-

fore always nothing, and the axis of rotation will al-

ways coincide with the third principal axis; from

which it follows, that if the body begins to turn about

one of the principal axes, it will continue to turn uni-

formly about the same axis. This remarkable property

of the principal axes, has caused them to be called the

principal axes of rotation; it belongs exclusively to

them
;

for if the real axis of rotation is invariable at

the surface of the body, we have
cfy?:z=:0, dq^=Q, and

cfrzzzO ; the preceding values of these quantities there-

fore give

B-A C-B A-C
-0.r0=0; -.rp=0; ~-.pq=0.

In the general case whereof, B, and Care unequal,

two of the three quantities p^ q, and r are nothing in

consequence of these equations, which implies, that

the real axis of rotation coincides with one of the prin-

cipal axes.

If two of the three quantities^, JE>, and Care equal,

for example, if we have^fczB; the three preceding

equations will be reduced to these rpi=.0 and pq=0>
and they may be satisfied by supposing p 0. The

axis of rotation is then in a plane perpendicular to the

third principal axis ; but we have seen, No. 27, that-

all the axes situated in this plane are principal axes.



238 LAPLACE'S MECHANICS.

Lastly, if we have at the same time 4=zB=:C9 the

three preceding equations will be satisfied whatever

may be p, q, and r, but then by No. 27, all the axes

of the body are principal axes.

It follows from the above, that the principal axes

alone have the property of being invariable axes of ro-

tation ; but they do not all of them possess it in the

same manner. The movement of rotation about that

of which the moment of inertia is between the moments

of inertia of the two other axes, may be troubled in a

sensible manner by the slightest cause; so that there

is no stability in this movement.

That state of a system of bodies is called stable

in which, when the system undergoes an indefinitely

small alteration, it will vary in an indefinitely small

degree by making continual oscillations about this

state. This being understood, let us suppose that the

real axis of rotation is at an indefinitely small distance

from the third principal axis; in this case the constant

quantities Jkf andM1 are indefinitely small ; if n be a

real quantity the values of q and r will always remain

indefinitely small, and the real axis of rotation will

only make oscillations of the same order about the third

principal axis. But if n be imaginary, sin.(nt^-y}
and cos.(nt~\-y) will be changed into exponentials;

consequently the expressions of q and r may augment

indefinitely, and eventually cease to be indefinitely

small quantities* ; there is not therefore any stability

* By the rules of trigonometry jl/.sin. (w/ -}- y) zz

9
in this expression e



LAPLACE'S MECHANICS. 239

in the movement of rotation of a body about the third

principal axis*. - The value of n is real if C is the

represents the number of which the hyperbolical logarithm
is unity. If n is an impossible quantity it may be supposed

equal to m\/ 1 ; let this value be substituted for it in the

above equation, and we shall have <jrAf.sin.(;ntft/ l

i

^
_

-yr ^f__ e__ . As the quantity

mt is real, the value of q may increase as that of t increases,

until it ceases to be indefinitely small. It may be shewn in

a similar manner that if t increase r will also increase, and

at length cease to be indefinitely small.

* In the equations

let the values of p' 9 ',
and r1 be substituted, then if the

second, after having divided both its members by AB, be

subtracted from the first, the following will be obtained,

If q and r are very small at the beginning of the movement,
J/2

the constant quantity k z-- - which may be represented

by jL, is very small at that time
;
the quantities q* and r *

will therefore, if the difference A C arid & C have the

same sign, always remain very small and have^for their re.

limits_ and

If the differences A C and B C have not the same sign
and the constant quantity L is supposed very small, the

above equation may have place although the values of q and
and r increase indefinitely.
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greatest or the least of the three quantities A^ B, and

C, for (hen the product (C A).(C B) is positive;

but I his product is negative if C is between A and B,
and in this case n is imaginary ; thus the movement of

rotation is stable about the two principal axes of which

the moments of inertia are the greatest and the least;

but not so about the other principal axis.

In order to determine the position of the principal

axes in space, let us suppose the third principal axis

very nearly perpendicular to the plane of x' and
i/

1

',
so

that may be a very small quantity of which the square

can be neglected. We shall have by N. 26,

which gives from integration

%k=<p -pt-s,

s being a constant quantity. If we afterwards make

the values of q and r of No. S6, will give by extract-

ing

and by integration

.

--pu=r; -+ps=-q,

*
By differentiation and substitution the equations

ds du
pw~r? |-jW #>

will become
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/3 and X being two new constant quantities ; the problem

is thus completely resolved, because the values of s

and u give the angles 9 and <p
in a function of the time,

and %|/ is determined in a function of <p
and t. If /3 is

nothing the plane of x1 and y1 becomes the invariable

plane to which we have referred in the preceding num-

ber the angles 0, <p, and %J/.

31. If the body is free, the analysis of the preceding
numbers will give its movement about its centre of gra-

vity ; if the solid is forced to move about a fixed point,

it will always shew its movement about this point. It

remains for us to consider the movement of a solid sub-

jected to turn about a fixed axis.

Let us suppose that x is the axis which we shall

imagiae to be horizontal : in this case the last of the

equations (B) of No. %5 "will be sufficient to determine

the movement of the body. Let us suppose also, that

the axis ofy' is horizontal and that the axis of z' is ver-

tical and directed towards the centre of the earth ; let

us conceive lastly, that the plane which passes by the

axes of y' and s', passes through the centre of gravity

of the body, and also that an axis passes constantly

These equations may be readily integrated. See No. 623

of the Traite du Calcul Differentie! et du Calcul Integral of

Lacroix, where a general formula is given for equations of

this description.
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through this centre and the origin of the co-ordinates.

Let be the angle which this new axis makes with that

of %' ; if we name the co-ordinates referred to this new

axis, y 11 and z" we shall have*

yzszy'.coiJ+^.sin.S; z'=.z fl
.cos. 6 y.sin.9;

from which may be obtained

S.dm. (ylfi

-\-%*") is the moment of inertia of the body
relative to the axis ofxl

; let C be this moment. The

last of the equations (B) of No. 25 will give

Let us suppose that the body is solicited only by the

force ofgravity : the values ofP and Q of No. 25 will

be nothing and R will be constant, which gives

The axis of za passing through the centre of gravity of

the body, we have S.y".dm^=& ; moreover if h repre-

sents the distance of the centre of gravity of the body

* By referring to figure 17
?
and notes page 169, A may

be supposed to be the centre of the co-ordinates and point

through which the horizontal axis a/ passes, AY the vertical

axis of 2', AX the horizontal axis ofy, AYt
that of z" which

passes through the centre of gravity of the body and makes

the angle Q with a',
and AX, the axis of y

11
. In this case

the values ofy and z' may be found in the terms of y
11 and

sy/, in a manner similar to that in which the values of x and

y were found in the terms of x
f
and yt

in the above men.

tioned number.
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from the axis of x', we shall have S.z"*dm=:mh, m
being the whole mass of the body ; we shall therefore

have
dN"

and consequently

</*0 mh.R.sm.Q

Let us now consider a secpnd body, all the parts of

which are united in one sole point at the distance / from

the axis of x' ; we shall have relative to this body C=
m'P, m' being its mass; moreover h will be equal to /;

by equating
#0 R . .___...

These two bodies will therefore have exactly the same

movement of oscillation, if their initial angular veloci-

ties, when their centres of gravity are in the vertical,

C
are the same, and we have /= r-mm

The second body just noticed is the simple pendu-

lum, of which we have considered the oscillations at

No. 11; we are therefore always able to assign by this

formula the length / of the simple pendulum, the oscil-

lations of which are isochronous to those of the solid

which has here been considered and which forms a

compound pendulum. It is thus that the length of

the simple pendulum which oscillates seconds, is

determined by observations made upon compound

pendulums.
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CHAP. VIII.

Of the motion of Jtuids.

32. VTE shall make the laws of the motion of fluids

depend upon those of their equilibrium, in a similar

manner to that by which we have in Chap. 5, deduced

the laws of the motion of a system of bodies from those

of its equilibrium. Let us therefore resume the general

equation of the equilibrium of fluids given in No. 17;

the characteristic S being only relative to the co-

ordinates x, ?/, and s of the molecule, and independent

of the time t. When the fluid is in motion, the forces

which would retain its molecules in the state of equi-

librium are by No. 18, dt being supposed constant,

'-() <M3> *-()'
it is therefore necessary to substitute these forces for

jP, Q, and R
y
in the preceding equation of equilibrium.

Denoting by W the variation
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which we will suppose exact* ; we shall have

>r-f=,,()+.,.()+(>
this equation is equivalent to three distinct equations,

for the variations %x, oy, and Js being independent, we

may equal their co-efficients separately to nothing*.

* As this variation is exact in the cases in which the

forces of attraction are directed towards centres that are

either fixed or moveable, it comprehends all the forces in

nature which can act upon the molecules of a fluid mass, and

may therefore be regarded as always exact.

f In places where an incompressible fluid is supported at

one of its sides, the value of p shews the pressure against

this side in the direction of a normal to it
;
at those parts of

the fluid mass Avhich are free this value is nothing. When
the value of p is a known function of t, jr, y, and z, it

will give, by being equalled to nothing, the equation of the

surface of an incompressible fluid during its motion. If / is

not contained in this value of />, the surface of the fluid will

preserve the same form and the same position in space, on

the contrary when p contains t it will change its form or po-
sition every instant.

J In order that the reader may have a correct idea of the

corresponding variations of/, a?, y, and s and the total or par-
tial variations of a function of them, I shall suppose .F a

function of
, #, y, and s, and first imagine ,r, t?/,

and z to

vary, t remaining constant. In this case the contempora-
neous values of Fmay be compared, which at a determinate

instant answer to the different points of a system and belong
to the different molecules placed at these points at the same

instant.

If on the contrary #, y, and z are supposed constant and

t to vary, the values of jP will appertain to the different
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The co-ordinates x 9 ?/, and z are functions of the

primitive co-ordinates and of the time t ; let
, 5, and

c be these primitive co-ordinates, we shall then have

By substituting these values in the equation (F) 9

co-efficients of So, &, and Sc may be equalled sepa-

rately to nothing ; which will give three equations of

partial differentials between the three co-ordinates x9

molecules which during successive instants pass by the same

point which has x
9 y, and z for its co-ordinates.

Lastly ;
if we make x

9 y 9
and z to vary either partially or

together and suppose t also variable ;
the different values of

F will belong to the same molecule, and change as it passes

in successive instants from one point to another in the system.

If the position of the molecule is known at the commence,

ment of the motion, the constant quantities belonging to

the three equations which give the values of x
9 y, and z in

functions of t will be known. The values of #, y^ and z

may therefore be found at any instant, which will give the

position of the molecule at that instant.

If the time t be eliminated from the three equations given

by the values of x^ y^ and z
9
two equations of the curve

described by the molecule will be known. The form and

position of the curve will change by passing from one mo-

lecule to another : the constant quantities in this case

changing their values as the initial position of the molecule

changes.
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y, and z of the molecule, its primitive co-ordinates
,

by c9
and the time t.

It remains for us to fulfil the conditions of the con-

tinuity of the fluid. For this purpose let us consider

-at the origin of the motion, a rectangular fluid paral-

lelepiped having for its three dimensions d, d#, and

dc. Denoting by (%) the primitive density of this

molecule, its mass will be (%).da.db.dc. Let this

parallelepiped be represented by (A)*; it is easy to

* In figure 22 the rectangular parallelepiped A is repre-

sented, having da, d&, and dc for its three edges; this

parallelepiped is changed after the time t into that given
in figure 23, in which from the extremities of the edge fg
which is composed of the molecules that formed the edge dc,

two planes gn, fo, are supposed to be drawn parallel to the

plane of x and y ; by the prolongation of the edges of the

parallelepiped gl or (B) to these planes a new one (C) is

formed equal to (B), as the parts cut of from (B) and those

added to (C) respectively compensate each other. The

height fg of (C) 9
as it is independent of the molecules in

da and d6, is found by making c alone to vary in differen-

tiating the value of z
9

it is therefore equal to t ~ l.dc. In

figure 24, let tiqrp denote the section (e) having its side $p
formed by molecules of the side d&, dc, and its side Hq by
molecules of the side da, dc of the parallelepiped (A).
From and p the lines $m and pn are supposed to be drawn

parallel to the axis of a?, meeting the line qr or its continu.

ation in m and w, and consequently forming a new" paral-

lelogram (X) which is equal to the former ( E ) ;
as it has the

same base $p and is between the same parallels. The value

of Sp is found by taking the differential ofy in making ,
z
9

^nd t constant, and the value of $m by taking the differential
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perceive that after the time t, it will be changed into an

oblique angled parallelepiped; for all the molecules

primitively situated upon any side whatever of the

parallelepiped (A), will again be in the same plane,
at least by neglecting the indefinitely small quantities,

of the second order : all the molecules situated upon the

parallel edges of (A) will be upon the small right lines

equal and parallel to each other. Denoting this new

parallelepiped by (B}, and supposing that by the ex-

tremities of the edge formed by the molecules which in

the parallelepiped (A) 9 composed the edge de, we

draw two planes parallel to that of x and y. By pro-

longing the edges of (B) until they meet these two

planes, we shall have a new parallelepiped (C) con-

tained by them, which is equal to (B) ; for it is evi-

dent that as much as is taken from the "parallelepiped

(B) by one of the two planes, is added to it by the

other. The parallelepiped (C) will have its two

bases parallel to the plane of x and^y: its height con-

tained between its bases will be evidently equal to the

differential of z taken by making c alone to vary ;

which gives (
-j- J.dc

for this altitude.

of x in supposing y and s constant. These last values mul-

tiplied/ogether give the value of the surface of the paral-

lelogram (X), or that of its equal ( ) ; which value, when

multiplied by ( ~T )'^c ^ie differential of z, gives the con.

tnt of the parallelepiped (C) or (B).
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We shall have its base, by observing that it is equal

to the section off B) made by a plane parallel to that

of x and y ; let this section be denoted by (s). The

value of s \vill be the same with respect to the molecules

of which it is formed ; and we shall have

Let $p and
<$q

be two contiguous sides of the section

fej, of which the first is formed by molecules of the

side d6.dc of the parallelepiped (A), and the second

by molecules of its side da.dc. If by the extremities

of the side $p we suppose two right lines parallel to the

axis of a.', and" we prolong the side of the parallelogram

CO parallel to $p until it meets these linos
; they will

intercept between themselves a new parallelogram (\)

equal to (s), the base of which will be parallel to the

axis of x. The side lp being formed by molecules of

the face d&.dc, relative to which the value of z is the

same ;
it is easy to perceive that the height of the

parallelogram pO, is the differential of y taken by-

supposing 0, s, and t constant, which gives

from which may bo obtained

this is the expression of the height of the parallelogram

(K}. Its base is equal to the section of this parallelo-

gram made by a plane parallel to the axis of x ; this

section is formed of the molecules of the parallelepiped
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by relation to which % and y are constant, its

length is therefore equal to the differential of x taken

by supposing z, y^ and t constant, which gives the

three equations

Suppose for abridgment

^(*v*v-w-v
-V</<J VSJ Ve/c7 Vd<J \dcdb
(dx\(*L\(te_\ (*L\(W\.(*L \
\db) \dc) \daj \dbj \daj \dc /

dz\ sdx\
fdy

db)-- (do )\di
we shall have

/3.da

dcj \db.

this is the expression of the base of the parallelogram

(X} ;
the surface of this parallelogram will therefore be

This quantity also expresses the surface of

dc
'

the parallelogram fO, ^ we mulitiply it by

we shall have ;3.d0.d.dc for the magnitude of the

parallelepipeds (C) and (E). Let be the density

of the parallelepiped (A) after the time*; then its

mass will be represented by ? ./3.da.d&.dc, which being

equalled with the first mass (;.dfl.d&.dc, gives
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for the equation relative to the continuity of the fluid.

33. We may give to the equations (F) and (G)
another form more convenient for use in certain cir-

cumstances. Let w, v, and v, be the respective velo-

cities of a fluid molecule parallel to the axis of tf, y^
and % : \ve shall have

CD (!)=- ()=<
By differentiating these equations, and regarding w, v 9

and v as functions of the co-ordinates #, y, and z of

the molecule, and of the time t ; we shall have

dv

dzz\ fdv
7u')=(^

The equation (F) of the preceding number will then

become

+-(!)

(H)

Tn order to have the equation relative to the continuity
of a fluid, let us snppose that in the value of /3 of the

preceding number, a
? b, and c may be equal to x, ?/,
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and s, and that #, j/-,
and z may be equal respectively

to x-*\-udi) y-\-vdt) and s-}-vd!f, which is equivalent to

taking the first co-ordinates
, &, and c indefinitely

near to .?, y, and s/ we shall then have

the equation (G) becomes

If we consider p as a function of x, y, s, and t
9 we

shall have

the preceding equation will therefore become

this is the equation relative to the continuity of the

fluid, and it is easy to perceive, that it is the differen-

tial of the equation (G) of the preceding number,

taken relative to the time /t.

* The equation

(dp\
( d.pu

rf-9+(^
is equivalent to the following

which' is what the equation (G) becomes when the values of

|3 and (?) are substituted.

+ If the fluid be incompressible, as the mass the density

and the magnitude of each molecule of the fluid \vill remain

invariable, the equation (K) 9 by equalling separately the
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The equation (H) is susceptible of integration in a

very extensive case, that is when w&r+T&y+v&s is an

variations of the density and the mass to nothing, will give

the two following

By joining these equations to the three given by that of (H)
we shall have five which will enable us to determine the un-

known quantities f , p, u, t>,
and v in functions of /, ,r,

y, and z.

If the incompressible fluid is homogeneous the density

will be a constant quantity ;
in this case we shall have only

the second of the above equations and the three given by
that of (II) to determine the four unknown quantities p,
u

9 u, and v.

If the fluid is elastic we shall have the equation (K) and

the three given by that of (H) : if the temperature be the

same throughout the mass, the density will be as the pres-

sure, which gives p=:k ;
therefore there will be only four

unknown quantities which the four equations above men.

tioned are sufficient to discover. If the temperature be

variable and a given function of the time, the quantity k

will be a function of these variables, consequently the before

mentioned equations will be sufficient to determine the values

of p, M, v
9
and v.

It appears from the above that we shall have in every case

as many equations as there are unknown quantities in the

problem. But as these are equations of partial differentia.

tions of
, JT, #, and z

9 they have at present resisted every

attempt to integrate them. In some instances they have

been simplified and integrated by particular suppositions,
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exact variation of r, y, and z, p being also any func

tion whatever of the pressure p. If therefore &p repre

sent this variation ; the equation (H) will give*

from which we may obtain by integrating it with re

spect to S,

It is necessary to add a constant quantity v hich is a

function of t to this integral, but we may suppose that

this quantity is contained in the function <p. This last

function gives the velocities of the fluid molecules

parallel to the axes of x, y^ and s : for we have

The equation (K) relative to the continuity of the fluicl

becomes

but eren then the greatest difficulty has attended the deter-

mination of the arbitrary constant quantities which depend

upon the state of the fluid at the commencement of its motion,

* That the equation (H) gives

may be rendered evident from considering, for instance,

which is
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thus we have relative to homogeneous fluids

ft may be observed that the function ti

is an exact variation of #, y^ and z at all times, if it be

during one instant. Let us suppose that at any instant

whatever, it is equal to p ; in Ihc following instant we

shall have

it will therefore be an exact variation at this instant,

tion at the first instant ; but the equation (H) gives at

this instant
(*).**( )%+(>=^-^

this equation is consequently an exact variation in x,

The integration of the equation

which presented the greatest difficulties has been fortunately

accomplished by Marc Antoine Parseval, a French mathe.

matician. Vide the eighth Cahier of the Journal de 1

Poljtechnique,
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y, and %; thus if the function u.<$a:-\-'0.ty-{-v.'$z ^>e ari

exact variation one instant, it will also be one in the

nexf, it. is therefore an exact variation at all times.

When fhe motions are very small ; we may neglect

the squares and the products of w, v
9
and v; the equa-

tion (II) then becomes

therefore in this case u3x-\-v.\y-\-v.lz is an exact va-

riation, if, as we have supposed, p be a function off ;

by naming this differential t$ 9
we shall have

and if the fluid be homogeneous, the equation of con-

tinuity will become

These two equations contain the whole of the theory of

very small undulations of homogeneous fluids.

34. Let us consider an homogeneous fluid mass

which has an uniform movement of rotation about the

* In the case of the very small undulations of an homo.

dp n
geneous incompressible heavy fluid, such as water,/ =^-;

if the axis of z be supposed in the direction of gravity, at

dp fd<p\
its surface the equation Vf ml -r J

is changed into the

fd\
following gszzrl -r 1 : g representing the constant force of

gravity.
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axis of x. Let n represent the angular velocity of ro-

tation at a distance from the axis which we will take

for the unify of distance ; we shall then have r= nz ;

; the equation (II) of the preceding number

also become

f

which equation is possible because its two members are

exact differentials. The equation (K) of the same

number in like manner will become

* In figure 25 let A represent the origin of the co.

ordinates, AY the axis of y^ AZ that*of 2, and AD the

projection upon the plane yz of a line drawn from a molecule

in the fluid mass perpendicular to the axis of x from D
draw the line DZ perpendicular to the axis AZ

9
then DZ

=y, AZ=2, and AD \/#*+z*. Let a line DE be

drawn from D perpendicular to AD, and from any point E
in it draw a line EF perpendicular to DZ ; then if DE re.

present the velocity of the molecule in the direction perpen-
dicular to AD, it may be supposed to be resolved into two

others DF and FE in the respective directions ofy and z.

As the velocity at the distance represented by unity from

the axis of x is n, that at the distance yV-f-s
2

is nv/J^f?
=:DE. From the similarity of the right angled triangles

AZU and DFE

but DFnz is the velocity in the direction of the axis y 9

and ought to be taken negatively as it tends to diminish that
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and it is evident that this equation is satisfied if the fluid

mass be homogeneous*. The equations of the motion

of fluids are then therefore satisfied^ and consequently

this movement is possible.

The centrifugal force at the distance vV*-f-2
2 from

the axis of rotation, is equal to the square of the velo-

city w2

.(^
a
+2

2
J divided by this distance

;
the function

n*.(yty-\-z$z) is consequently the product of the cen-

trifugal force by the element of its direction I
; therefore

by comparing the preceding equation of the movement

axis. Again 1/3/
2 +sz V

' '

n\/y*-\-z
z

: PEny, or the

velocity of the molecule in the direction of the axis 2.

* That the equation (II) is reduced to the value given in

this number appears evident from considering, that all the

terms in the second member vanish except v.f l.tyrz

n*yty and v.l
J.$srr--

22$2

In the equation (K) the respective values of p I
--

),

(Ju\
fdv\

r- 1 and p.i -j- I, in this case, are evidently equal to

nothing: also the partial differentiations of
p respectively

vanish if the fluid is homogeneous.

t The centrifugal force at the distance

axis of rotation is equal to orn

value multiplied into the element of its direction or
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of a fluid, with the general equation of the equilibrium

of fluids given in No. 17 ; we may perceive that the

conditions of movement of which it treats, reduce

themselves to those of the equilibrium of a fluid mass

solicited by the same forces, and by the centrifugal

force due to the movement of rotation : which is other-

ways evident*.

If the exterior surface of a fluid mass is free, we

shall have fy?z=0 at this surface, and consequently

from which it follows, that the resultant of all the

forces which act upon each molecule of the exterior

surface, should be perpendicular to this surface ; it

ought also to be directed towards the interior of the

fluid mass* If these conditions be fulfilled an homo-

geneous fluid mass will be in equilibrio, supposing at

the same time, that it covers a solid body of any figure

whatever.

The case which we have examined is one of those in

which the variation u.%z-\-v.ty-}-v.'<iz is not exact : for

* The general equation given in this number, when the

value of Fis substituted, becomes

f

is independent of the time, and has n z
.(i/ty-\~z$z) for

the value of the centrifugal force multiplied into the element

of its direction
;

it is therefore evident that the conditions

of movement are, in this case, the same as those of the

equilibrium of a fluid mass solicited by the same forces and

by the centrifugal force arising from the rotatory motion of

the mass. See notes page 1 34.
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(his variation becomes n.($yTfiz); therefore in

the theory of (he flux and reflux of the sea, we cannot

suppose that the variation concerned is exact, because

it is not in the very simple case in which the sea has no

other movement than that of rotation, which is com-

mon to it and the earth.

35. Let us now determine the oscillations of a fluid

mass covering a spheroid possessed of a movement of

rotation nt about the axis of x ; supposing it to be very

little altered from the state of equilibrium by the action

of very small forces. At the beginning of the move-

ment, let r be the distance of a fluid molecule from the

centre of gra\ ity of the spheroid that it covers, which

we will suppose immoveable, let be the angle that

the radius r forms with the axis of x, and is the angle

which the plane that passes by the axis of x and this

radius forms with the plane of a; and y. Let us sup-

pose that after the time t the radius r is changed into

r-\-as y
that the angle is changed into 0-|-a, and that

the angle OT is changed into nt-\-Tx-{-(xv ; as, aw, and i)

being very small quantities of which we may neglect

the squares and the products; we shall then have*

* In figure 18, let C represent the origin of the co-

ordinates at the centre of gravity of the spheroid, CB 9 CF9

and CE the respective axes of
a?, #, and z, CA the distance

of a fluid molecule from C, AD a perpendicular let fall

from the molecule to the plane of FCB or xy 9
DB and con.

sequently AB^ perpendiculars drawn from D and A to the axis

of a?, thenC^r+ a*, C/fae, BD=y, and AD~z, also the

angle ACB made by the radius and axis of tf~#-f"w?
and
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. cos.

s) . sin . ( --ait . cos,

z=(r-\-xs) .sin . ( Q-}-zu ) .sin .

If we substitute these values in the equation (F)o(
No. 32, we shall have by neglecting the square of a,

n.'fl.(g)+Sii.8in.8.cos.8.(

sin.
2

9.(J) | =|-.J.

At the exterior surface of the fluid %p=.0 ; also in the

state of equilibrium

($ V) being the value of P" which belongs to this state.

the angle ABD or the inclination of the planes ACB and

tf^zrrwtf+CT+ ay. By trigonometry, in the right angled

triangle ACB we have

rad.(l) : cos.(0-fa ) : : r-f s : a:iz:fr+ a5>os.(9+^),
and

rad.(l) : sin.(9-LaM) : : r-fas : AB (r-f *0.sin.(0-f-*zO j

also in the right angled triangle ADB we have

rad.(l) : cos.(w#-f-CT-|-ay) : : (r-f .y)a

-f ^)sin,(04-w)cos.(/-f CT i at') and

rad.(l) : sin.(w/+^+ a y) : : (r-f *4>i.
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Let us suppose the sea to be the fluid treated upon ;

the variation (W) will be the product of the gravity

multiplied by the element of its direction. Let g re-

present the force of gravity, and ay the elevation of a

molecule of water at the surface above the surface of

equilibrium, which surface we shall regard as the true

level (niveau) of the sea. The variation (IV) in the

state of movement will by this elevation be increased

by the quantity ag.^y, because the force of gravity

acts very nearly in the direction of the ay's and towards

their origin. Lastly denoting by a$V the part of SF
relative to the new forces which in the state of move-

ment solicit the molecule, and depend either upon the

changes which the attractions of the spheroid and the

fluid experience from, this state, or from foreign attrac-

tions; we shall have at the surface

The variation -~3.{(r-\-<x.s).sii\,(Q-}-oiu)}* is increased

by the quantity a a

.$y.r.sin.
a
0*, in consequence of the

height of the molecule of water above the surface of the

sea ; but this quantity may be neglected relative to the

n2r
term etgtyy because the ratio of the centrifugal

* The quantity w 2
.?/.r.sin.

2
may be obtained from the

variation .&.{(> -f- xs).$in.(Q-}-au)}
2

by differentiating

that variation with respect to r, neglecting the quantities

s and u, which are relative to time, and supposing that

$r is equal
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force at the equator to gravity, is a very small fraction

equal to *. Lastly, the radius r is very nearly con-
28SP

stant at the surface of the sea, because it differs very

little from a spherical surface ; we may therefore sup.

pose Sr equal to nothing. The equation L thus be-

comes at the surface of the sea

du\
J -f

the variations ty and IV being relative to the two va-

riables and CT.

Let us now consider the equation relative to the

continuity of the fluid. For which purpose, we may
suppose at the origin of the movement a rectangular

parallelepiped, of which the altitude is dr, the breadth

rdw.sin.fi and the length rd0. Let r', 0', and w' re-

present the values of r, 0, and OT after the time t. By
following the reasoning of No. 32, we shall find that

after this time, the volume of the fluid molecule is

*
*w*.fy.r.sin.

2 has the same ratio to ag.ty as

r.sin. 2

has to 1, but the centrifugal force atiheequa.

tor is ~ or w2
r, and is nearly equal to - there.

?z
2 .r.sin. 2

fore-_.- may |je negiected when compared with I.
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equal to a rectangular parallelepiped of which the

altitude is .clr and the breadth

by extracting dr by means of the equation

lastly its length is

- K?
by extracting dr and dw, by means ofthe equations

Supposing therefore

V-W- "I f-Y(-/ VMrV V^7 \cirj \d^

dr

the volume of the molecule after the time t \vill be /3'.

r/2 .sin.Q.dr.d0.dOT; therefore naming (p) the primitive

density of this molecule, and p its density correspond-

ing to t ; we shall have by equalling the primitive ex-

pression of its mass, to its expression after the time t>

p.fi'r'
2
.sin.Q'=(p).r*.sm.Q;

this is the equation of the continuity of the fluid. In

the present case

r7

r-|-a$ ; V=Q-\-au ; w=/rf+^+a^ ;

we shall therefore have by neglecting the quantities of

the order a2
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Let us suppose that after the time 9, the primitive den-

sity (p) of the fluid is changed into (pJ-^-ap'; the pre-

ceding equation relative to the continuity of the fluid

will give

(_I
|

dr j

36. *Let us apply these results to the oscillations of

the sea. Its mass being homogeneous we have'//=0'
and consequently

Let us suppose conformably to what appears to have

place in nature, that the depth of the sea is very small

relative to the radius r of the terrestrial spheroid ; let

this depth be represented by y, 7 being a very small

function of 6 and ts which depends upon the law of

this depth. If we integrate the preceding equation

with respect to r, from the surface of the solid which

the sea covers unto the surface of the sea ; we shall

* As the notes necessary to elucidate this and the follow,

ing number satisfactorily would from their very great length
too much increase the size of the Work, I shall refer the

reader who is desirous of full information respecting them

to the fourth book of the Mechanique Celeste, where all

the equations are integrated and every particular explained
in the fullest manner.
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find that the value of 5 is equal to a function of 0, 37,

and t independent of r, plus a v-ery small function

which will be with respect to u and v of the same small

order as the function -
;
but at the surface of the solid

which the sea covers, when the angles d and -57 are

changed into 6-\-au and nt-\--&-\-av 9
it is easy to per-

ceive, that the distance of the molecule of water con-

tiguous to this surface from the centre of gravity of the

earth, only varies by a very small quantity with respect

to au and att, and of the same order as the products of

these quantities by the eccentricity of the spheroid

covered by the sea : the function independent of r

which enters into the expression of s is therefore a

very small quantity of the same order ; so that we may

generally neglect s in the expressions where n and v are

concerned. The equation of the motion of the sea at

its surface given in No. 35 therefore becomes

dt

(M)
the equation (L) of the same number relative to any

point whatever of the interior of the mass of fluid,

gives in the state of equilibrium

(IV) and ($p) being the values of SP and *p which in

the state of equilibrium answer to the quantities r-|-as,

Q-j-aw, and tv-\-(x.'n. Suppose that in the state of mo-

tion, we have

the equation (L) will give
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The equation f3/J shews that wj j
is of the same

yu
order as # or s, and consequently of the order ; the

value of the first member of this equation is therefore of

the same order; thus multiplying this value by rfr,

and integrating it from the surface of the spheroid

which the sea covers unto the surface of the sea, we

7>
J

shall have V equal to a very small function of the
f

order
, plus a function of 0, w, and t independent of

7-3
which we will denote by, A; having therefore regard

in the equation (L) of No. 35 only to (wo variables

6 and w, it will be changed into the equation (M) 9

with the sole difference, that the second member will

be changed into %K. But * being independent of the

depth at which the molecule of water which we are

considering is found ; if we suppose this molecule very
near the surface, the equation (L) ought evidently to

coincide with the equation (M) ; we have therefore

^=sP gty> and consequently

the value of 5V in the second member of this equation

being relative to the surface of the sea. We shall find

in the theory of the flux and reflux of the sea, that this

value is nearly the same for all the molecules situated

upon the same terrestrial radius, from the surface of the

solid which the sea covers to the surface of the sea ; we
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have therefore relative to all these molecules frssgjy :

which gives p' equal to p .gy plus a function independ-

ent of 0, 37, and r : but at the surface of level of the

sra, the value of
/?'

is equal to (he pressure of the small

column ay of water which is elevated above this sur-

face, and this pressure is equal to a-p*s:y\ we have

therefore in all the interior of the fluid n;ass 9 from the

surface of the spheroid which the sea covers, to the

surface of level of the sea, p'=pg?f ; therefore any

point whatever of the surface of the spheroid covered

by the sea, is more pressed than in the state of equi-

librium, by all the weight of the small column of water

comprised between the surface of the sea and the sur-

face of level. This excess of pressure becomes negative

at the points where the surface of the sea is sunk below

the surface of level.

It follows from what has been said, that if we only

have regard to the variations of and of ts
; the equation

(L) will be changed into the equation (M} 9 for all

the interior molecules of the fluid mass. The values of

u and of v relative to all the molecules of the sea situ-

ated upon the same terrestrial radius, are therefore de-

termined by the same differential equations: therefore by

supposing as we shall in the theory of the flux and reflux

of the sea, that at the beginning of the motion the values

^ u
"> \'dt) 9 ^' \/F/'

were the same for all the mo-

lecules situated upon the same radius these molecules

would remain upon the same radius during the oscil-

lations of the fluid. The values r, u, and v may
therefore be supposed very nearly the same upon the

small part of the terrestrial radius comprised between

the solid that the sea covers and the surface of the sea:

therefore from integrating with relation to r the equation
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M.COS.0)

ImTS'
we shall have

(r*s) being the value of r*s at the surface of the sphe-

roid covered by the sea. The function r*s^~-(r*s) i?

yery nearly equal to r*.{s (s)}-\-2ry(s), (s) being

the value of s at the surface of the spheroid ; the term

2ry.(s) may be neglected on account of the smallness

of y and (s) ; thus we shall have

r 5 (r*s)=r*.{s(s)}.
Moreover the depth of the sea corresponding to the

Angles Q-}"aW and nt-\-Tz-\-a,v is y-|~a< { 5 (s)}i ^ we

place the origin of the angles 6 and nt-\--& at a point

and a meridian fixed upon the surface of the earth,

which may be done as we shall forthwith see; this

(dy\
fdy \

^ J-j-a^.I
-

1, plus <he eleva-

tion y of the fluid molecule of the surface of the sea

^bove the surface of level ; we shall therefore have

The equation relative to the continuity of the fluid

consequently will become

d,yv \ yu.cos.Q

(d.yu

\

i/r/-
It may be observed that in this equation, the angles $

and nt-^-vs are reckoned relative to a point and to a

meridian fixed upon the earth, and that in the equation

(M) these same angles are reckoned relative to the

axis of j;, and to a plane which passing through this

axis will have a movement of rotation about it equal to

n ; but this axis and this plane are not fixed at the sur-
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face of the earth, because the attraction and the pres-

sure of the fluid which covers it ought to alter their

position a little upon this surface, as well as the move-

ment of rotation of the spheroid. But it is easy to

perceive, that these alterations are to the values of au

and av
9
in the ratio of the mass of the sea to that of the

terrestrial spheroid ; thus, in order to refer the angles Q

and nt-}- to a point and to a meridian which are in-

variable at the surface of this spheriod in the two

equations (M) and (N) ; it is sufficient to alter u and

o by quantities of the order and
,

which quanti-

ties may be neglected ;
in these equations therefore, it

may be supposed that &u and av are the movements of

the fluid in latitude and longitude.

Again, it may be observed, that the centre ofgravity

of the spheroid being supposed immoveable, it is ne-

cessary to transfer in a different direction to the fluid

molecules the forces by which it is actuated in conse-

quence of the re-action of the sea ; but as the common

centre of gravity of the spheroid and the sea does not

change its situation in consequence of this re-action, it

is evident that the ratio of these forces to those by
which the molecules are impelled from the action of

the spheroid, is of the same order as the ratio of the

fluid mass to that of the spheroid^ and consequently of

*y

the order - ; they may therefore be neglected in the

calculation of c V .

37. Let us consider in the same manner the motions

of the atmosphere. We shall in this research neglect

the variations of the heat at different latitudes and dif-

ferent heights, as well as all irregular causes which
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agitate it, and only have regard to the regular causes

which act upon it as upon the ocean. We shall con-

sequently suppose the sea covered by an elastic fluid of

an uniform temperature ; we will also suppose con form-

ably to experience, that the density of this fluid is

proportional to its pressure. This supposition gives

an indefinite height to the atmosphere, but it is easy to

be assured, that at a very small height its density is so

trifling that it may be regarded as nothing.

This being agreed upon, let s', ti'
y
and vf

represent

for the molecules of the atmosphere, what s, u^ and

signified for the molecules of the sea ; the equation (L)
ef No. 35 will then give

du'\ . 2.sin. 2u\ . 2.sn.

l)+r
-2*r. sin.'O. =.

Let us at present consider the atmosphere in the slate

of equilibrium in which s
r

, u !

9
and vr are nothing.

The preceding equation will give by integration,

F-/--= constant.
* p

The pressure p being conceived to be proportional to

the density, we shall make p=.Lg.p, g being the

gravity at a determinate place, which may be supposed
to be the equator, and / being a constant quantity that

gives the height of the atmosphere, conceived tobeofths

same density throughout, as at the surface of the sea :
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(his height is very small when compared with the radiu

of the terrestrial spheroid, of which it is not the 720th

part.

The integral/ is equal tol.g.log.p; the preceding
1

P

equation of the equilibrium of the atmosphere conse-

quently becomes

n z

/g.log.fznconst.-j- V-\ .r.
2
sin.*Q.

At the surface of the sea, the value of V is the same for

a molecule of air as for the molecule of water which is

contiguous to it, because the forces which solicit each

molecule are the same ; but the conditions of the equi-

librium of the sea requires that we should have

M2

V-\ .r
2
.sin.

20=consf. ;

therefore at this surface p is constant, that is to say, the

density of the lamina of air next to the sea, is through-

out the same in the state of equilibrium.

If R represent the part of the radius r comprised

between the centre of the spheroid and the surface of

the sea, and r1 the part comprised between this sur-

face and a molecule of air elevated above it, r' will

(7Z

Z \_ rt 18

R
from the height of this molecule above the surface of

the sea: we shall therefore neglect the quantities of

this order. The equation between p and r will give

iin.'fl+ft'.Rr'.sin.'fl; the values of V, and
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'cl
iV\

-T-- \ being relative to the surface of the sea where

^ye have

sdy\
the quantity I ^-

J
w
2
7?. sin.

2
9 is the gravity at this

same surface
;
we shall denote it by g

f
. The function

d*F\
-j z f being multiplied by the very small quantity ?'

2
,

we may determine it on the supposition that the earth

is spherical, and reglect the density of the atmosphere

relative to that of the earth; we shall thus have very

nearly

dr

sd*V\m denoting the mass of the earth ; by equating I - I

zzz: zzi-~ ; \ve shall therefore have Ig.log.p ncoust.

r' 2

rtg'
--

-g/
. from which may be obtained

c being the number ofwhich the hyperbolical logarithm

is unity, and IT being a constant quantity evidently

equal to the density of the air at the surface of the sea.

Let/i and h 1

represent the respective lengths of pendu-
lums oscillating seconds at the surface of the sea ander

the equator, and at the latitude of the molecule of air

' h1

which has been considered : we shall have -=r, and
g h>

consequently



274 LAPLACE'S MECHANICS.

This expression of the density of the air shews, that the

laminae of the same density are throughout equally

elevated above the surface of the sea, except by the

quantity
-

^
-

nearly ; but in the exact calculation

of the heights of mountains by the observations of the

barometer, this quantity ought not to be neglected.

Let us now consider the atmosphere in the state of

motion, and let us determine the oscillations of a lamina

of level, or of the same density in the state of equilib-

rium. Let a$ be the elevation of a molecule of air

above the surface of level to which it appertains in the

state of equilibrium ; it is evident that in consequence

of this elevation, the value of SF will be augmented by
the differential variation &.$$; we shall therefore

have 2F=f * V) g.ty+*V ; (* V) being the value

of ^V which in the state of equilibrium corresponds to

the lamina of level and to the angles 0-j-aw and nt-\~ix

-\-av; SF;

being the part of F arising from the new

forces which in the state of movement agitate the at-

mosphere.
Let f=C/0+a/, (p) being the density of the lamina

of surface in the state of equilibrium. If we make

1

'-= we shall have

but in the state of equilibrium

0=!.S.{fr+*
S;.sin.f9+*

the general equation of the motion of the atmosphere
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will therefore become relative to the laminae of level,

with respect to which Sr is very nearly nothing,

sin.
9O.(V (*');,

being the variation of r corresponding in the

state of equilibrium to the variatons aw' and at/ of the

angles 9 and sr.

Let us suppose that all the molecules of air situated at

first upon the same terrestrial radius, remain constantly

upon the same radius in the state of motion, which has

place by what precedes in the oscillal ions of the sea;

and let us try if this supposition will satisfy the equa-

tions of the motion and of the continuity of the atmos-

pheric fluid. For this purpose it is necessary, that

the values of u 1 and v1 should be the same for all these

molecules; but the value IV is very nearly the same

for these molecules, as will be seen when we shall de-

termine in the sequel the forces from which this varia-

tion results ; it is therefore necessary that the variations

Sfp and ty' should be the same for all these molecules,

and moreover that the quantities 2wr.CT.sin.
2

0.j j,

and /z
2
r.sin.

2

O.{s' (s
1

)} may be neglected in the

preceding equation.

At the surface of the sea we have $=y, ag> being
the elevation of the surface of the sea above its surface

of level. Let us examine if the suppositions of (p equal

toy, and ofy constant for all the molecules of air situ-

ated upon the same radius, can subsist with the equation
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of the continuity of the fluid. This equation, by
No. 35, is

n 2 $=>>
\

\, J
1*&\

from which we may obtain

/-[-$' is equal to the value of r of the surface of level

which corresponds to the angles Q-\-&u and
t3-\-av, plus

the elevation of the molecule of air above this sur-

face; the part of as' which depends upon the variation

of the angles and is being of the order
, may be

neglected in the preceding expression of^', and con-

sequently it may be supposed in this expression that

V
-<p ; lastly if we make <p=y, we shall have ( - 1

zznO, because the value of 9 is then the same relative to

all the molecules situated upon the same radius. More-

n*

over y is by what precedes of the order /or ; the

expression ofy will thus become

u'.cos.Q

therefore u 1 and ^ being the same for all the molecules

situated originally upon the same radius, the value of

y
1 will be the same for all these molecules. Moreover

it is evident from what has been said, that the quantities

- and rc
2
r.sin.

2O .{*' (*')}, may

be neglected in the preceding equation of the motion of

the atmosphere, which can then be satisfied by sup-
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posing thai it' and ' are the same for all the molecules

of air situated originally upon the same radius : the

supposition that all these molecules remain constantly

upon the same radius during the oscillations of the fluid,

is therefore admissable with the equations of the motion

and of the continuity of the atmospheric fluid. In this

case the oscillations of divers lamina of level are the

same, and may be determined by means of the equations

-fr'.fo

>

\

These oscillations of the atmosphere ought to produce

analogous oscillations in the altitudes of the barometer.

To determine these by means of the first, let us suppose

a barometer fixed at any height whatever above the

surface of the sea. The altitude of the mercury is pro-

portional to the pressure which its surface exposed to

that of the air experiences; it may therefore be repre-

sented by Ig.p ; but this surface is successively exposed
to the action of different laminae of level which elevate

and lower themselves like the surface of the sea; thus

the value of p at the surface of the mercury varies;

first, because it appertains to a lamina of level which

in the state of equilibrium was less elevated- by the

quantity ay ; secondly, because the density of a lamina

is augmented in the state of motion by ap
r

or by j-~.

Jn consequence of the first cause the variation of p is
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^-( T" ) or ~~^~5 the **al variation of the den-

sity p at the surface of the mercury is therefore a,(p).

y-\-y
r

7 . It follows from the above, that if the altitude

of the mercury in the barometer at the state of equilib-

rium is denoted by "A: ; its oscillations in the state of

motion will be expressed by the function ~~T~
L

*

they are therefore similar at all heights above the sur-

iace of the sea, and proportional to the altitudes of the

barometer.

It now only remains in order to determine the oscilla-

tions of the sea and of the atmosphere, to know the

forces which act upon these two fluid masses and to in-

tegrate the preceding differential equations ; which will

be done in the fouilh book of this work.
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CHAP. IX*.

Of the law of universal gravity obtainedfrom

phenomena*

38. AFTER having developed the laws of motion, we
will proceed to derive from them and from those of the

celestial motions presented in detail in the work entitled,

Exposition du Systeme du Monde, the general law of

these motions. Of all the phenomena that which seems

to be the most proper to discover this law, is the elliptic

motion of the planets and of cornets about the sun : let

us see what may be derived from it. For this purpose,

let x and y represent the rectangular co-ordinates of a

planet in the plane of its orbit, having their origin at

the centre ofthe sun ; also let P and Q denote the forces

* This chapter which forms part of the first chapter of the

second book of the Mechanique Celeste, is added in order to

afford the reader some idea of the manner in which Laplace

applies the rules given in the introductory treatise.
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\vhich act upon this planet parallel to the axes of x and

y^ during its relative motion about the sun, these forces

being supposed to tend towards the origin of the co-

ordinates, lastly, let dt represent the element of the

time which we will regard as constant ; we shall

have by Chap. 2,
r72v,

(0

(2)

If we add the first of these equations multiplied by y
to the second multiplied by x9

the following equal ion

will be obtained,

It is evident that xdyydx is equal to twice the area

which the radius vector of the planet describes about

the sun during the instant dt ; by the first law of Kepler
this area is proportional to the element of the time, we

shall therefore have

c being a constant quantity ; the differential of the first

member of this equation is equal to nothing, conse-

quently

xQ ?/P=.0.
It follows from this equation tliat^P has to Q the

same ratio as x has to y, and that their resultant passes

by the origin of the co-ordinates ; that is by the centre

ofthe sun. This is otherways evident, for the curve de-

scribed by the planet is concave towards the sun, con-

sequently the force which causes it to be described

tends towards that star.

The law of the proportionality of the areas to the

times employed to describe them, therefore conduct?
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us to this remarkable result ;
that the force which soli-

cits the planets and the comets is directed towards the

centre of the sun.

39. Let us now determine the law by which the force

acts at different distances from this star. It is evident

that the planets and the comets alternately approach to

and recede from the sun, during each revolution ; the

nature of the elliptic motion ought to conduct us to this

law. For which purpose resuming the differential

equations (1) and (2) of the preceding No., if we add

the first multiplied by dx to the second multiplied by

dy^ we shall have

which gives by integration

the constant quantity being indicated by the sign of

integration. If we substitute instead of dt its value

- -
,
which is given by the law of

u
the propor.

tionality of the areas to the times, we shall have

l̂

For greater simplicity let the co-ordinates x and y
be transformed into a radius vector and a traversed angle

conformably to astronomical practice. Let r represent

the radius drawn from the centre of the sun to that of

the planet, or its radius vector, and v the angle which

it forms with the axis of .r ; we shall then have

consequently
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If the principal force that acts upon the planet be

denoted by <p ; the preceding No. will give

therefore

by substitution we shall have

consequently
cdr

Hn -_ (<%
\

rVc*Zr 2

fydr
'

This equation will give by means of quadratures th

value of V in r, when the force $ is a known function of

r; but this force being unknown, if the nature of the

curve which it causes to be described is given, by

differentiating the preceding expression of
2/<pc?r, we

shall have to determine <p the equation

dr*

c/r

The orbifs of the planets are ellipses, having the

centre of the sun at one of the foci ;
if in the ellipse w

denotes the angle which the major axis makes with the

axis of .r, and the origin of x be fixed at the focus,

and a represent the semi- major axis, and e the ratio of

the eccentricity to the semi-major axis; we shall have

which equaf ion belongs to a parabola if <r=1, and a be

infinite; and to an hyperbola if e surpass unity, and a

fee negative. This equation gives

dr- 2
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consequently

therefore, the orbits of the planets being conic sections,

the force p is inversely as the square of the distance of

th centre of these planets from that of the sun.

We also perceive that if the force
<p

is inversely as

the square of the distance, or expressed by ,
h being

a constant coefficient, the preceding equation of conic

sections will satisfy the differential equation (k)

between r and
xi, which gives the expression of <p when

h c*
we change <p

into , We shall then have h=i r

which forms a conditional equation between the two

constant quantities a and e of the equation of conic

sections ; the three constant quantities , e, and 73 of

this equation are therefore reduced to two distinct con-

stant quantities, and as the differential equation be-

tween r and v is only of the second order, the finite

equation of conic sections is the the complete integral

From the above it follows, that if the curve described

be a conic section the force is in the inverse ratio of

the square of the distance, and reciprocally if the force

be inversely as the square of the distance, the curve

described is a conic section.

40. The intensity of the force (p relative to each pla-

net and to each comet depends upon the coefficient

c2
-

; the laws of Kepler likewise give ihej means
(i e )

of determining it. Thus, if T denote the time of the

revolution of a planet, the area that its radius vector

describes during this time being the surface of the pla-

netary ellipse is equal to <araVlt% it being the ratio
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of the serai-circumference to the radius ; but by what

precedes, the area described during the instant dt is -1

cdt : the law of the proportionality of the areas to

the times will therefore give (he following proportion,

icdtl va\ 1 e: Idt: T
-,

therefore

e

T"
Relative to the planets, the law of Kepler, that the

squares cf the times of their revolutions are as the cubes

of the great axes of their ellipses, givesT^ssJ
9
^, k

being the same for all the planets ; we therefore have

2flf 1 (?) is the parameter of the orbit, and in different

orbits the values of c are as the areas traced by the radii

vectores in equal times ; these areas are therefore as the

square root of the parameters of the orbits.

This proportion has equally place relative to the or-

bits of comets compared either to each other or to the

orbits of the planets; this is one of the fundamental

points of their theory which answers so exactly to all

i heir observed motions. The major axes of their orbits

and the times of their revolutions being unknown, we
calculate the motions of these stars in a parabolic orbit,

and, expressing by D their perihelion distance, we

suppose c=. -
; which is equivalent to making

i

equal to unity, and a infinite, in the preceding ex-

pression of c; we have therefore relative to comets, 2 2

r= a

a% so that when their revolutions shall be known,
the major axes of their orbits can be determined.
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The expression of c gives

c*

a(l**) k*
f

we have therefore

The coefficient ~ being the same for all the planetsK

and comets, it results that for each of these bodies,

the force p is inversely as the square of the distances

from the centre of the sun, and only varies from one

body to another by reason of these distances ; from

which it follows, that it is the same for all these bodies

supposed at equal distances from the sun.

We are therefore conducted by the beautiful law* of

Kepler to regard the centre of the sun as the focus of

an attractive force which extends itself infinitely in all

directions, decreasing in the ratio of the squares of the

distances. The law of the proportionality of the areas

described,by the radii vectores to the times employed in

describing them, proves to us that the principal force

which solicits the planets and the comets is constantly

directed towards the centre of the sun; the ellipticitjr

of the planetary orbits, and the very nearly parabolical

motions of the comets, shew that for each planet and

lor each comet this force is inversely as the square of

the distance of these stars from the sun; lastly, from

the law of the proportionality of the squares of the

times of the revolutions to the cubes of the major axes

of the orbits, or that of the proportionality of the

areas described during the same time by the radii vec-

tores in different orbits to the square roots of the para-

meters of these orbits, which law contains the preceding
and is ext;>nc{?M.l to comets : it results, that this force if
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tbe same for all the planets and the comets placed at

equal distances from the sun, so that in this case, these

bodies would be precipitated towards it with the same

Telocity.

Printed by H, Baroett, Long Row, Market-place, Nottingham.



ERRATA.

Page 11. Notes line 3, for, direction "by S. $c. read,

direction by lines denoted by S. Sfc.

Page 56. Line 1, for, dx, read, d*z.

Page 135. Notes line 4 from the bottom, instead o',

to on* half that, read, to that.
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